Deep Learning is becoming increasingly important in a technology-dominated world. However, the building of computational models that accurately represent linguistic structures is complex, as it involves an in-depth knowledge of neural networks, and the understanding of advanced mathematical concepts such as calculus and statistics. This book makes these complexities accessible to those from a humanities and social sciences background, by providing a clear introduction to deep learning for natural language processing. It covers both theoretical and practical aspects, and assumes minimal knowledge of machine learning, explaining the theory behind natural language in an easy-to-read way. It includes pseudo code for the simpler algorithms discussed, and actual Python code for the more complicated architectures, using modern deep learning libraries such as PyTorch and Hugging Face. Providing the necessary theoretical foundation and practical tools, this book will enable readers to immediately begin building real-world, practical natural language processing systems.
"Sinopsis" puede pertenecer a otra edición de este libro.
Mihai Surdeanu is Associate Professor in the Computer Science Department at the University of Arizona. He works in both academia and industry on NLP systems that process and extract meaning from natural language.
Marco Antonio Valenzuela-Escárcega is a Research Scientist in the Computer Science department at the University of Arizona. He has worked on natural language processing projects in both industry and academia.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 12,60 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 4,66 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Books From California, Simi Valley, CA, Estados Unidos de America
hardcover. Condición: Fine. Nº de ref. del artículo: mon0003544031
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781316515662_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46666455
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781316515662
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 668. Nº de ref. del artículo: C9781316515662
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 342 pages. 9.00x6.00x0.81 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __1316515664
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46666455
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 46666455-n
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 46666455-n
Cantidad disponible: 1 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. Deep Learning is becoming increasingly important in a technology-dominated world. However, the building of computational models that accurately represent linguistic structures is complex, as it involves an in-depth knowledge of neural networks, and the understanding of advanced mathematical concepts such as calculus and statistics. This book makes these complexities accessible to those from a humanities and social sciences background, by providing a clear introduction to deep learning for natural language processing. It covers both theoretical and practical aspects, and assumes minimal knowledge of machine learning, explaining the theory behind natural language in an easy-to-read way. It includes pseudo code for the simpler algorithms discussed, and actual Python code for the more complicated architectures, using modern deep learning libraries such as PyTorch and Hugging Face. Providing the necessary theoretical foundation and practical tools, this book will enable readers to immediately begin building real-world, practical natural language processing systems. A clear, accessible introduction to deep learning for natural language processing (NLP), this book is ideal for readers without a background in machine learning and NLP. It covers the necessary theoretical context using minimal jargon also covers practical aspects, using actual Python code for the neural architectures discussed. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781316515662
Cantidad disponible: 1 disponibles