Heavy tails –extreme events or values more common than expected –emerge everywhere: the economy, natural events, and social and information networks are just a few examples. Yet after decades of progress, they are still treated as mysterious, surprising, and even controversial, primarily because the necessary mathematical models and statistical methods are not widely known. This book, for the first time, provides a rigorous introduction to heavy-tailed distributions accessible to anyone who knows elementary probability. It tackles and tames the zoo of terminology for models and properties, demystifying topics such as the generalized central limit theorem and regular variation. It tracks the natural emergence of heavy-tailed distributions from a wide variety of general processes, building intuition. And it reveals the controversy surrounding heavy tails to be the result of flawed statistics, then equips readers to identify and estimate with confidence. Over 100 exercises complete this engaging package.
"Sinopsis" puede pertenecer a otra edición de este libro.
Jayakrishnan Nair is Associate Professor in Electrical Engineering at IIT Bombay. His research focuses on modeling, performance evaluation, and design issues in online learning environments, communication networks, queueing systems, and smart power grids. He is the recipient of best paper awards at IFIP Performance (2010 and 2020) and ACM e-Energy (2020).
Adam Wierman is Professor of Computing and Mathematical Sciences at the California Institute of Technology (Caltech). His research develops tools in machine learning, optimization, control, and economics with the goal of making the networked systems that govern our world sustainable and resilient. He is best known for his work spearheading the design of algorithms for sustainable data centers and he is the recipient of numerous awards including the ACM Sigmetrics Rising Star award, the ACM Sigmetrics Test of Time award, the IEEE Communication Society William Bennet Prize, and multiple teaching and best paper awards.
Bert Zwart is group leader at CWI Amsterdam and Professor of Mathematics at Eindhoven University of Technology. He has expertise in stochastic operations research, queueing theory, and large deviations, and in the context of heavy tails, he has focused on sample path properties, designing Monte Carlo methods and applications to computer-communication and energy networks. He was area editor of Operations Research, the flagship journal of his profession, from 2009 to 2017, and was the recipient of the INFORMS Applied Probability Society Erlang prize, awarded every two years to an outstanding young applied probabilist.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,24 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 7,63 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781316511732
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 44122415-n
Cantidad disponible: 3 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530051083
Cantidad disponible: 18 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781316511732
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9781316511732
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44122415
Cantidad disponible: 3 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Hardcover. Condición: new. Hardcover. Heavy tails extreme events or values more common than expected emerge everywhere: the economy, natural events, and social and information networks are just a few examples. Yet after decades of progress, they are still treated as mysterious, surprising, and even controversial, primarily because the necessary mathematical models and statistical methods are not widely known. This book, for the first time, provides a rigorous introduction to heavy-tailed distributions accessible to anyone who knows elementary probability. It tackles and tames the zoo of terminology for models and properties, demystifying topics such as the generalized central limit theorem and regular variation. It tracks the natural emergence of heavy-tailed distributions from a wide variety of general processes, building intuition. And it reveals the controversy surrounding heavy tails to be the result of flawed statistics, then equips readers to identify and estimate with confidence. Over 100 exercises complete this engaging package. Heavy tails - extreme events more common than expected - are everywhere, but they are still treated as mysterious and confusing because the necessary mathematical models are not widely known. For the first time, this book provides a rigorous introduction to heavy-tailed distributions accessible to anyone who knows elementary probability. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781316511732
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781316511732_new
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 44122415-n
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 680. Nº de ref. del artículo: B9781316511732
Cantidad disponible: Más de 20 disponibles