Optimization in Solving Elliptic Problems focuses on one of the most interesting and challenging problems of computational mathematics - the optimization of numerical algorithms for solving elliptic problems. It presents detailed discussions of how asymptotically optimal algorithms may be applied to elliptic problems to obtain numerical solutions meeting certain specified requirements. Beginning with an outline of the fundamental principles of numerical methods, this book describes how to construct special modifications of classical finite element methods such that for the arising grid systems, asymptotically optimal iterative methods can be applied. Optimization in Solving Elliptic Problems describes the construction of computational algorithms resulting in the required accuracy of a solution and having a pre-determined computational complexity. Construction of asymptotically optimal algorithms is demonstrated for multi-dimensional elliptic boundary value problems under general conditions. In addition, algorithms are developed for eigenvalue problems and Navier-Stokes problems. The development of these algorithms is based on detailed discussions of topics that include accuracy estimates of projective and difference methods, topologically equivalent grids and triangulations, general theorems on convergence of iterative methods, mixed finite element methods for Stokes-type problems, methods of solving fourth-order problems, and methods for solving classical elasticity problems. Furthermore, the text provides methods for managing basic iterative methods such as domain decomposition and multigrid methods. These methods, clearly developed and explained in the text, may be used to develop algorithms for solving applied elliptic problems. The mathematics necessary to understand the development of such algorithms is provided in the introductory material within the text, and common specifications of algorithms that have been developed for typical problems in mathema
"Sinopsis" puede pertenecer a otra edición de este libro.
D'yakonov, Eugene G.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,61 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 10,39 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 30692728
Cantidad disponible: 10 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 30692728
Cantidad disponible: 10 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 390933281
Cantidad disponible: 3 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. D yakonov, Eugene G.Optimization in Solving Elliptic Problems focuses on one of the most interesting and challenging problems of computational mathematics - the optimization of numerical algorithms for solving elliptic problems. It presents detai. Nº de ref. del artículo: 595575963
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 30692728-n
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 30692728-n
Cantidad disponible: 10 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. 1st edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26389715198
Cantidad disponible: 3 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 590 pages. 9.21x6.14x1.18 inches. In Stock. Nº de ref. del artículo: __1315896117
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18389715188
Cantidad disponible: 3 disponibles