The Present Lectures Intend To Provide An Introduction To The Spectral Analysis Of Self-Joint Operators Within The Framework Of Hilbert Space Theory. The Guiding Notion In This Approach Is That Of Spectral Representation. At The Same Time The Notion Of Function Of An Operator Is Emphasized. The Definition Of Hilbert Space: In Mathematics, A Hilbert Space Is A Real Or Complex Vector Space With A Positive-Definite Hermitian Form, That Is Complete Under Its Norm. Thus It Is An Inner Product Space, Which Means That It Has Notions Of Distance And Of Angle (Especially The Notion Of Orthogonality Or Perpendicularity). The Completeness Requirement Ensures That For Infinite Dimensional Hilbert Spaces The Limits Exist When Expected, Which Facilitates Various Definitions From Calculus. A Typical Example Of A Hilbert Space Is The Space Of Square Summable Sequences. Hilbert Spaces Allow Simple Geometric Concepts, Like Projection And Change Of Basis To Be Applied To Infinite Dimensional Spaces, Such As Function Spaces. They Provide A Context With Which To Formalize And Generalize The Concepts Of The Fourier Series In Terms Of Arbitrary Orthogonal Polynomials And Of The Fourier Transform, Which Are Central Concepts From Functional Analysis. Hilbert Spaces Are Of Crucial Importance In The Mathematical Formulation Of Quantum Mechanics.
"Sinopsis" puede pertenecer a otra edición de este libro.
The Present Lectures Intend To Provide An Introduction To The Spectral Analysis Of Self-Joint Operators Within The Framework Of Hilbert Space Theory. The Guiding Notion In This Approach Is That Of Spectral Representation. At The Same Time The Notion Of Function Of An Operator Is Emphasized. The Definition Of Hilbert Space: In Mathematics, A Hilbert Space Is A Real Or Complex Vector Space With A Positive-Definite Hermitian Form, That Is Complete Under Its Norm. Thus It Is An Inner Product Space, Which Means That It Has Notions Of Distance And Of Angle (Especially The Notion Of Orthogonality Or Perpendicularity). The Completeness Requirement Ensures That For Infinite Dimensional Hilbert Spaces The Limits Exist When Expected, Which Facilitates Various Definitions From Calculus. A Typical Example Of A Hilbert Space Is The Space Of Square Summable Sequences. Hilbert Spaces Allow Simple Geometric Concepts, Like Projection And Change Of Basis To Be Applied To Infinite Dimensional Spaces, Such As Function Spaces. They Provide A Context With Which To Formalize And Generalize The Concepts Of The Fourier Series In Terms Of Arbitrary Orthogonal Polynomials And Of The Fourier Transform, Which Are Central Concepts From Functional Analysis. Hilbert Spaces Are Of Crucial Importance In The Mathematical Formulation Of Quantum Mechanics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,65 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781258449834
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLING22Oct2018170081959
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Spectral Theory Of Operators In Hilbert Space 1.14. Book. Nº de ref. del artículo: BBS-9781258449834
Cantidad disponible: 5 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 547. Nº de ref. del artículo: C9781258449834
Cantidad disponible: Más de 20 disponibles