Artículos relacionados a Optimization methods

Optimization methods ISBN 13: 9781233138050

Optimization methods - Tapa blanda

 
9781233138050: Optimization methods

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Optimization methods

Imagen del vendedor

Source
ISBN 10: 1233138057 ISBN 13: 9781233138050
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Source: Wikipedia. Pages: 35. Chapters: Expectation-maximization algorithm, Levenberg Marquardt algorithm, Gauss Newton algorithm, Gradient descent, Derivation of the conjugate gradient method, Luus Jaakola, BFGS method, Cutting-plane method, Golden section search, Karmarkar's algorithm, Newton's method in optimization, Nonlinear programming, Quasi-Newton method, Interior point method, Simultaneous perturbation stochastic approximation, L-BFGS, WORHP, Nonlinear conjugate gradient method, Kantorovich theorem, Frank Wolfe algorithm, Trust region, Line search, Sequential quadratic programming, Davidon Fletcher Powell formula, IPOPT, Successive parabolic interpolation, SR1 formula, Powell's method, Local convergence, Optimization algorithm. Excerpt: In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step. The EM algorithm was explained and given its name in a classic 1977 paper by Arthur Dempster, Nan Laird, and Donald Rubin. They pointed out that the method had been 'proposed many times in special circumstances' by earlier authors. In particular, a very detailed treatment of the EM method for exponential families was published by Rolf Sundberg in his thesis and several papers following his collaboration with Per Martin-Löf and Anders Martin-Löf. The Dempster-Laird-Rubin paper in 1977 generalized the method and sketched a convergence analysis for a wider class of problems. Regardless of earlier inventions, the innovative Dempster-Laird-Rubin paper in the Journal of the Royal Statistical Society received an enthusiastic discussion at the Royal Statistical Society meeting with Sundberg calling the paper 'brilliant'. The Dempster-Laird-Rubin paper established the EM method as an important tool of statistical analysis. The convergence analysis of the Dempster-Laird-Rubin paper was flawed and a correct convergence analysis was published by C. F. Jeff Wu in 1983. Wu's proof established the EM method's convergence outside of the exponential family, as claimed by Dempster-Laird-Rubin. Given a statistical model consisting of a set of observed data, a set of unobserved latent data or missing values , and a vector of unknown param 36 pp. Englisch. Nº de ref. del artículo: 9781233138050

Contactar al vendedor

Comprar nuevo

EUR 16,88
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Source
ISBN 10: 1233138057 ISBN 13: 9781233138050
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Source: Wikipedia. Pages: 35. Chapters: Expectation-maximization algorithm, Levenberg¿Marquardt algorithm, Gauss¿Newton algorithm, Gradient descent, Derivation of the conjugate gradient method, Luus¿Jaakola, BFGS method, Cutting-plane method, Golden section search, Karmarkar's algorithm, Newton's method in optimization, Nonlinear programming, Quasi-Newton method, Interior point method, Simultaneous perturbation stochastic approximation, L-BFGS, WORHP, Nonlinear conjugate gradient method, Kantorovich theorem, Frank¿Wolfe algorithm, Trust region, Line search, Sequential quadratic programming, Davidon¿Fletcher¿Powell formula, IPOPT, Successive parabolic interpolation, SR1 formula, Powell's method, Local convergence, Optimization algorithm. Excerpt: In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step. The EM algorithm was explained and given its name in a classic 1977 paper by Arthur Dempster, Nan Laird, and Donald Rubin. They pointed out that the method had been 'proposed many times in special circumstances' by earlier authors. In particular, a very detailed treatment of the EM method for exponential families was published by Rolf Sundberg in his thesis and several papers following his collaboration with Per Martin-Löf and Anders Martin-Löf. The Dempster-Laird-Rubin paper in 1977 generalized the method and sketched a convergence analysis for a wider class of problems. Regardless of earlier inventions, the innovative Dempster-Laird-Rubin paper in the Journal of the Royal Statistical Society received an enthusiastic discussion at the Royal Statistical Society meeting with Sundberg calling the paper 'brilliant'. The Dempster-Laird-Rubin paper established the EM method as an important tool of statistical analysis. The convergence analysis of the Dempster-Laird-Rubin paper was flawed and a correct convergence analysis was published by C. F. Jeff Wu in 1983. Wu's proof established the EM method's convergence outside of the exponential family, as claimed by Dempster-Laird-Rubin. Given a statistical model consisting of a set of observed data, a set of unobserved latent data or missing values , and a vector of unknown paramBooks on Demand GmbH, Überseering 33, 22297 Hamburg 36 pp. Englisch. Nº de ref. del artículo: 9781233138050

Contactar al vendedor

Comprar nuevo

EUR 16,88
Convertir moneda
Gastos de envío: EUR 19,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito