Artículos relacionados a The Principles of Mathematics

The Principles of Mathematics - Tapa blanda

 
9781230430911: The Principles of Mathematics

Sinopsis

This historic book may have numerous typos and missing text. Purchasers can usually download a free scanned copy of the original book (without typos) from the publisher. Not indexed. Not illustrated. 1903 edition. Excerpt: ... INDEX The references are to pages. References in black type are to passages where a technical term is defined or explained. Absolute, 226, 448 Abstraction, principle of, ix, 166, 219, 242, 285, 305, 314, 497, 519 Acceleration, 474, 483; absolute, 490, 491 Achilles and the tortoise, 350, 358 Action and Beaction, 483 Activity, 450 Addition, arithmetical, 118, 307; of indi- viduals, 71, 133-135; logical, 17, 21, 116; ordinal, 318; of quantities, 179, 180; relational, 182, 254i; of relations, 321; relative, 26, 387 n.; of vectors, 477 Adjectives, 20 n., 42 Aggregates, 67, 139, 442; and classes as one, 141; infinite, 143 Algebra, universal, 376 Aliorelative, 203 w., 320 n. All, 72, 105, 113, 305 Analysis, how far falsification, 141, 466; conceptual and real, 466 And, 67, 69, 71, 130 Angles, 205, 414; axioms of, 415, 416 Anharmonic ratio, 390, 391, 420 Antinomies, of infinity, 188, 190-193; Kant's, 259, 458-461 Any, 45, 46, 57, 105, 263, 305, 351; and kindred words, 55, 56, 59, 89, 91 Archimedes, axiom of, 181, 252, 254, 288, 332, 333, 337, 408 Area, 333, 417 Arithmetic, has no indemonstrables, 127; and progressions, 240; relation-, 321 Arrow, Zeno's argument of, 350 Assertion, 34-35, 48, 100, 502 ff. Assertions, 39, 44, 82, 83, 98, 106, 505 Associative law, 307 Assumptions, 503 Axioms, in Geometry, 373, 441 Being, 43, 49, 71# 446, 449 Bernouilli, 329 n. Bernstein, 306 n., 367 n. Bettazzi, 181 n., 185 Between, 200, 201, 205, 207, 214; three theories of, 208; is a relation between its terms? 210; and difference of sense, 211; indefinable? 213; in projective Geometry, 391, 393, 426; in descriptive Geometry, 393 Bolyai, 373 Bolzano, 70, 201 w., 307, 357 n. Boole, 10, 24, 376 Borel, 306 n., 367 n. Bradley, 41, 43 n„ 47, 90, 99, 161 n., 221,...

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

This historic book may have numerous typos and missing text. Purchasers can usually download a free scanned copy of the original book (without typos) from the publisher. Not indexed. Not illustrated. 1903 edition. Excerpt: ... INDEX The references are to pages. References in black type are to passages where a technical term is defined or explained. Absolute, 226, 448 Abstraction, principle of, ix, 166, 219, 242, 285, 305, 314, 497, 519 Acceleration, 474, 483; absolute, 490, 491 Achilles and the tortoise, 350, 358 Action and Beaction, 483 Activity, 450 Addition, arithmetical, 118, 307; of indi- viduals, 71, 133-135; logical, 17, 21, 116; ordinal, 318; of quantities, 179, 180; relational, 182, 254i; of relations, 321; relative, 26, 387 n.; of vectors, 477 Adjectives, 20 n., 42 Aggregates, 67, 139, 442; and classes as one, 141; infinite, 143 Algebra, universal, 376 Aliorelative, 203 w., 320 n. All, 72, 105, 113, 305 Analysis, how far falsification, 141, 466; conceptual and real, 466 And, 67, 69, 71, 130 Angles, 205, 414; axioms of, 415, 416 Anharmonic ratio, 390, 391, 420 Antinomies, of infinity, 188, 190-193; Kant's, 259, 458-461 Any, 45, 46, 57, 105, 263, 305, 351; and kindred words, 55, 56, 59, 89, 91 Archimedes, axiom of, 181, 252, 254, 288, 332, 333, 337, 408 Area, 333, 417 Arithmetic, has no indemonstrables, 127; and progressions, 240; relation-, 321 Arrow, Zeno's argument of, 350 Assertion, 34-35, 48, 100, 502 ff. Assertions, 39, 44, 82, 83, 98, 106, 505 Associative law, 307 Assumptions, 503 Axioms, in Geometry, 373, 441 Being, 43, 49, 71# 446, 449 Bernouilli, 329 n. Bernstein, 306 n., 367 n. Bettazzi, 181 n., 185 Between, 200, 201, 205, 207, 214; three theories of, 208; is a relation between its terms? 210; and difference of sense, 211; indefinable? 213; in projective Geometry, 391, 393, 426; in descriptive Geometry, 393 Bolyai, 373 Bolzano, 70, 201 w., 307, 357 n. Boole, 10, 24, 376 Borel, 306 n., 367 n. Bradley, 41, 43 n„ 47, 90, 99, 161 n., 221,...

Biografía del autor

Bertrand Russell (1872-1970) was born in England and educated at Trinity College, Cambridge. His long career established him as one of the most influential philosophers, mathematicians, and social reformers of the twentieth century.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialTheClassics.us
  • Año de publicación2013
  • ISBN 10 1230430911
  • ISBN 13 9781230430911
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas234

Comprar usado

Condición: Como Nuevo
Like New
Ver este artículo

EUR 29,61 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para The Principles of Mathematics

Imagen de archivo

Russell, Bertrand
Publicado por TheClassics.us, 2013
ISBN 10: 1230430911 ISBN 13: 9781230430911
Antiguo o usado Paperback

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA75812304309115

Contactar al vendedor

Comprar usado

EUR 65,87
Convertir moneda
Gastos de envío: EUR 29,61
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito