Artículos relacionados a Introduction to Mathematical Philosophy

Introduction to Mathematical Philosophy ISBN 13: 9781150264986

Introduction to Mathematical Philosophy - Tapa blanda

 
9781150264986: Introduction to Mathematical Philosophy

Reseña del editor

Book may have numerous typos, missing text, images, or index. Purchasers can download a free scanned copy of the original book (without typos) from the publisher. 1920. Excerpt: ... CHAPTER XII SELECTIONS AND THE MULTIPLICATIVE AXIOM In this chapter we have to consider an axiom which can be enunciated, but not proved, in terms of logic, and which is convenient, though not indispensable, in certain portions of mathematics. It is convenient, in the sense that many interesting propositions, which it seems natural to suppose true, cannot be proved without its help; but it is not indispensable, because even without those propositions the subjects in which they occur still exist, though in a somewhat mutilated form. Before enunciating the multiplicative axiom, we must first explain the theory of selections, and the definition of multiplication when the number of factors may be infinite. In defining the arithmetical operations, the only correct procedure is to construct an actual class (or relation, in the case of relation-numbers) having the required number of terms. This sometimes demands a certain amount of ingenuity, but it is essential in order to prove the existence of the number defined. Take, as the simplest example, the case of addition. Suppose we are given a cardinal number fi, and a class a which has fi terms. How shall we define j^+ju.? For this purpose we must have two classes having /x terms, and they must not overlap. We can construct such classes from a in various ways, of which the following is perhaps the simplest: Form first all the ordered couples whose first term is a class consisting of a single member of a, and whose second term is the null-class; then, secondly, form all the ordered couples whose first term is the null-class and whose second term is a class consisting of a single member of a. These two classes of couples have no member in common, and the logical sum of the two classes will have terms. Exactly analogously we can define fi--v, g...

"Sobre este título" puede pertenecer a otra edición de este libro.

  • ISBN 10 1150264985
  • ISBN 13 9781150264986
  • EncuadernaciónTapa blanda
  • IdiomaInglés

Comprar usado

Condición: Excelente
Zustand: Sehr gut - Gepflegter,...
Ver este artículo

EUR 45,00 gastos de envío desde Alemania a Estados Unidos de America

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Introduction to Mathematical Philosophy

Imagen de archivo

Bertrand Russell
Publicado por Cambridge Scholars Publishing, 2009
ISBN 10: 1150264985 ISBN 13: 9781150264986
Antiguo o usado Tapa blanda

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. | Seiten: 148 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 6307787/2

Contactar al vendedor

Comprar usado

EUR 33,14
Convertir moneda
Gastos de envío: EUR 45,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito