The first edition of this popular textbook, Contemporary Artificial Intelligence, provided an accessible and student friendly introduction to AI. This fully revised and expanded update, Artificial Intelligence: With an Introduction to Machine Learning, Second Edition, retains the same accessibility and problem-solving approach, while providing new material and methods.
The book is divided into five sections that focus on the most useful techniques that have emerged from AI. The first section of the book covers logic-based methods, while the second section focuses on probability-based methods. Emergent intelligence is featured in the third section and explores evolutionary computation and methods based on swarm intelligence. The newest section comes next and provides a detailed overview of neural networks and deep learning. The final section of the book focuses on natural language understanding.
Suitable for undergraduate and beginning graduate students, this class-tested textbook provides students and other readers with key AI methods and algorithms for solving challenging problems involving systems that behave intelligently in specialized domains such as medical and software diagnostics, financial decision making, speech and text recognition, genetic analysis, and more.
"Sinopsis" puede pertenecer a otra edición de este libro.
Richard E. Neapolitan is professor emeritus of computer science at Northeastern Illinois University and a former professor of bioinformatics at Northwestern University. He is currently president of Bayesian Network Solutions. His research interests include probability and statistics, decision support systems, cognitive science, and applications of probabilistic modeling to fields such as medicine, biology, and finance. Dr. Neapolitan is a prolific author and has published in the most prestigious journals in the broad area of reasoning under uncertainty. He has previously written five books, including the seminal 1989 Bayesian network text Probabilistic Reasoning in Expert Systems; Learning Bayesian Networks (2004); Foundations of Algorithms (1996, 1998, 2003, 2010, 2015), which has been translated into three languages; Probabilistic Methods for Financial and Marketing Informatics (2007); and Probabilistic Methods for Bioinformatics (2009). His approach to textbook writing is distinct in that he introduces a concept or methodology with simple examples, and then provides the theoretical underpinning. As a result, his books have the reputation for making difficult material easy to understand without sacrificing scientific rigor.
Xia Jiang is an associate professor in the Department of Biomedical Informatics at the University of Pittsburgh School of Medicine. She has over 16 years of teaching and research experience using artificial intelligence, machine learning, Bayesian networks, and causal learning to model and solve problems in biology, medicine, and translational science. Dr. Jiang pioneered the application of Bayesian networks and information theory to the task of learning causal interactions such as genetic epistasis from data, and she has conducted innovative research in the areas of cancer informatics, probabilistic medical decision support, and biosurveillance. She is the coauthor of the book Probabilistic Methods for Financial and Marketing Informatics (2007).
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 5,50 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 64,93 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: TextbookRush, Grandview Heights, OH, Estados Unidos de America
Condición: Brand New. Expedited orders RECEIVED in 1-5 business days within the United States. Orders ship SAME or NEXT business day. We proudly ship to APO/FPO addresses. 100% Satisfaction Guaranteed! Nº de ref. del artículo: 52688867
Cantidad disponible: 3 disponibles
Librería: Textbooks_Source, Columbia, MO, Estados Unidos de America
Hardcover. Condición: New. 2nd Edition. Ships in a BOX from Central Missouri! UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Nº de ref. del artículo: 002126456N
Cantidad disponible: 3 disponibles
Librería: medimops, Berlin, Alemania
Condición: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Nº de ref. del artículo: M01138502383-V
Cantidad disponible: 1 disponibles
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Hardcover. Condición: Fair. 2. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Nº de ref. del artículo: 1138502383-7-1
Cantidad disponible: 1 disponibles
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Hardcover. Condición: Very Good. 2. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Nº de ref. del artículo: 1138502383-8-1
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Hardcover. Condición: New. Nº de ref. del artículo: 6666-TNF-9781138502383
Cantidad disponible: 10 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Richard E. Neapolitan is professor emeritus of computer science at Northeastern Illinois University and a former professor of bioinformatics at Northwestern University. He is currently president of Bayesian Network Solutions. His researc. Nº de ref. del artículo: 595407150
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 30402272-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 30402272
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Nº de ref. del artículo: C9781138502383
Cantidad disponible: 5 disponibles