DEEP LEARNING FOR THE EARTH SCIENCES
Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices
Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research.
The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of:
Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
"Sinopsis" puede pertenecer a otra edición de este libro.
Gustau Camps-Valls is Professor of Electrical Engineering and Lead Researcher in the Image Processing Laboratory (IPL) at the Universitat de València. His interests include development of statistical learning, mainly kernel machines and neural networks, for Earth sciences, from remote sensing to geoscience data analysis. Models efficiency and accuracy but also interpretability, consistency and causal discovery are driving his agenda on AI for Earth and climate.
Devis Tuia, PhD, is Associate Professor at the Ecole Polytechnique Fédérale de Lausanne (EPFL). He leads the Environmental Computational Science and Earth Observation laboratory, which focuses on the processing of Earth observation data with computational methods to advance Environmental science.
Xiao Xiang Zhu is Professor of Data Science in Earth Observation and Director of the Munich AI Future Lab AI4EO at the Technical University of Munich and heads the Department EO Data Science at the German Aerospace Center. Her lab develops innovative machine learning methods and big data analytics solutions to extract large scale geo-information from big Earth observation data, aiming at tackling societal grand challenges, e.g. Urbanization, UN’s SDGs and Climate Change.
Markus Reichstein is Director of the Biogeochemical Integration Department at the Max-Planck- Institute for Biogeochemistry and Professor for Global Geoecology at the University of Jena. His main research interests include the response and feedback of ecosystems (vegetation and soils) to climatic variability with an Earth system perspective, considering coupled carbon, water and nutrient cycles. He has been tackling these topics with applied statistical learning for more than 15 years.
Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices
Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research.
The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of:
Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,33 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 4,60 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9781119646143
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781119646143_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 42789009-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 42789009-n
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781119646143
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 200. Nº de ref. del artículo: B9781119646143
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 460481151
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 42789009
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 42789009
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 200. Nº de ref. del artículo: C9781119646143
Cantidad disponible: Más de 20 disponibles