Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.
"Sinopsis" puede pertenecer a otra edición de este libro.
Joaquim R. R. A. Martins is a Professor of Aerospace Engineering at the University of Michigan. He is a fellow of the American Institute for Aeronautics and Astronautics, and the Royal Aeronautical Society.
Andrew Ning is an Associate Professor of Mechanical Engineering at Brigham Young University, and has previously worked at the National Renewable Energy Laboratory (NREL) as a Senior Engineer.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,02 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 1,77 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FM-9781108833417
Cantidad disponible: 15 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FM-9781108833417
Cantidad disponible: 15 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781108833417
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 43002936-n
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781108833417
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 637 pages. 10.25x7.75x1.25 inches. In Stock. Nº de ref. del artículo: __1108833411
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 43002936
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. A rigorous yet accessible textbook covering both fundamental and advanced optimization topics. Covering both gradient-based and gradient-free algorithms, derivative computation, and numerous visualizations, examples and problems, it is ideal for graduate co. Nº de ref. del artículo: 485626209
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments. A rigorous yet accessible textbook covering both fundamental and advanced optimization topics. Covering both gradient-based and gradient-free algorithms, derivative computation, and numerous visualizations, examples and problems, it is ideal for graduate courses on optimization in aerospace, civil, and mechanical engineering departments. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781108833417
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2317530288331
Cantidad disponible: 9 disponibles