This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
"Sinopsis" puede pertenecer a otra edición de este libro.
Avrim Blum is Chief Academic Officer at Toyota Technical Institute at Chicago and formerly Professor at Carnegie Mellon University, Pennsylvania. He has over 25,000 citations for his work in algorithms and machine learning. He has received the AI Journal Classic Paper Award, ICML/COLT 10-Year Best Paper Award, Sloan Fellowship, NSF NYI award, and Herb Simon Teaching Award, and is a Fellow of the Association for Computing Machinery (ACM).
John Hopcroft is a member of the National Academy of Sciences and National Academy of Engineering, and a foreign member of the Chinese Academy of Sciences. He received the Turing Award in 1986, was appointed to the National Science Board in 1992 by President George H. W. Bush, and was presented with the Friendship Award by Premier Li Keqiang for his work in China.
Ravi Kannan is Principal Researcher for Microsoft Research, India. He was the recipient of the Fulkerson Prize in Discrete Mathematics (1991) and the Knuth Prize (ACM) in 2011. He is a distinguished alumnus of the Indian Institute of Technology, Bombay, and his past faculty appointments include Massachusetts Institute of Technology, Carnegie Mellon University, Pennsylvania, Yale University, Connecticut, and the Indian Institute of Science.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 3,20 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,41 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: HPB-Red, Dallas, TX, Estados Unidos de America
hardcover. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_448080073
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2317530285186
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 37655859-n
Cantidad disponible: 2 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781108485067
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 37655859
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26382262559
Cantidad disponible: 4 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Hardcover. Condición: new. Hardcover. This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data. This book is aimed towards both undergraduate and graduate courses in computer science on the design and analysis of algorithms for data. The material in this book will provide students with the mathematical background they need for further study and research in machine learning, data mining, and data science more generally. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781108485067
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 381641408
Cantidad disponible: 4 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781108485067_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Hardcover. Condición: New. Nº de ref. del artículo: 6666-GRD-9781108485067
Cantidad disponible: 1 disponibles