The field of machine learning has matured to the point where many sophisticated learning approaches can be applied to practical applications. Thus it is of critical importance that researchers have the proper tools to evaluate learning approaches and understand the underlying issues. This book examines various aspects of the evaluation process with an emphasis on classification algorithms. The authors describe several techniques for classifier performance assessment, error estimation and resampling, obtaining statistical significance as well as selecting appropriate domains for evaluation. They also present a unified evaluation framework and highlight how different components of evaluation are both significantly interrelated and interdependent. The techniques presented in the book are illustrated using R and WEKA, facilitating better practical insight as well as implementation. Aimed at researchers in the theory and applications of machine learning, this book offers a solid basis for conducting performance evaluations of algorithms in practical settings.
"Sinopsis" puede pertenecer a otra edición de este libro.
Nathalie Japkowicz is Professor of Computer Science at American University. She is a former assistant professor at Dalhousie University and lecturer at Ohio State University. Japkowicz co-organized numerous workshops on classifier evaluation and the class imbalance problem at AAAI and ICML. She has published many articles in peer-reviewed journals and conference proceedings.
Mohak Shah is an AI and technology executive with extensive experience in bringing data and AI products to market. He has held several senior leadership roles in large enterprises and startups driving both large-scale AI transformation initiatives and zero-to-one product journeys. He is the founder and Managing Director of Praescivi Advisors, a strategic AI advisory practice. As a research scientist, Mohak has published extensively in theoretical and applied machine learning areas.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_456254630
Cantidad disponible: 1 disponibles
Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
Condición: Fine. *Price HAS BEEN REDUCED by 10% until Monday, Jan. 19 (weekend SALE item)* 424 pp., paperback, fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Nº de ref. del artículo: ZB1315217
Cantidad disponible: 1 disponibles
Librería: GoldBooks, Denver, CO, Estados Unidos de America
Condición: new. Nº de ref. del artículo: 78K89_70_1107653118
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2317530273998
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. The field of machine learning has matured to the point where many sophisticated learning approaches can be applied to practical applications. Thus it is of critical importance that researchers have the proper tools to evaluate learning approaches and understand the underlying issues. This book examines various aspects of the evaluation process with an emphasis on classification algorithms. The authors describe several techniques for classifier performance assessment, error estimation and resampling, obtaining statistical significance as well as selecting appropriate domains for evaluation. They also present a unified evaluation framework and highlight how different components of evaluation are both significantly interrelated and interdependent. The techniques presented in the book are illustrated using R and WEKA, facilitating better practical insight as well as implementation. Aimed at researchers in the theory and applications of machine learning, this book offers a solid basis for conducting performance evaluations of algorithms in practical settings. This book gives a solid basis for conducting performance evaluations of learning algorithms in practical settings with an emphasis on classification algorithms. The authors describe several techniques designed to deal with performance measures and methods, error estimation or re-sampling techniques, statistical significance testing, data set selection and evaluation benchmark design. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781107653115
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 424 pages. 9.50x6.00x1.00 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __1107653118
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781107653115_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9781107653115
Cantidad disponible: 10 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Nº de ref. del artículo: C9781107653115
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. The field of machine learning has matured to the point where many sophisticated learning approaches can be applied to practical applications. Thus it is of critical importance that researchers have the proper tools to evaluate learning approaches and understand the underlying issues. This book examines various aspects of the evaluation process with an emphasis on classification algorithms. The authors describe several techniques for classifier performance assessment, error estimation and resampling, obtaining statistical significance as well as selecting appropriate domains for evaluation. They also present a unified evaluation framework and highlight how different components of evaluation are both significantly interrelated and interdependent. The techniques presented in the book are illustrated using R and WEKA, facilitating better practical insight as well as implementation. Aimed at researchers in the theory and applications of machine learning, this book offers a solid basis for conducting performance evaluations of algorithms in practical settings. This book gives a solid basis for conducting performance evaluations of learning algorithms in practical settings with an emphasis on classification algorithms. The authors describe several techniques designed to deal with performance measures and methods, error estimation or re-sampling techniques, statistical significance testing, data set selection and evaluation benchmark design. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781107653115
Cantidad disponible: 1 disponibles