Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.
"Sinopsis" puede pertenecer a otra edición de este libro.
Shinichi Nakajima is a senior researcher at Technische Universität Berlin. His research interests include the theory and applications of machine learning, and he has published papers at numerous conferences and in journals such as the Journal of Machine Learning Research, the Machine Learning Journal, Neural Computation, and IEEE Transactions on Signal Processing. He currently serves as an area chair for NIPS and an action Editor for Digital Signal Processing.
Kazuho Watanabe is a lecturer at Toyohashi University of Technology. His research interests include statistical machine learning and information theory, and he has published papers at numerous conferences and in journals such as the Journal of Machine Learning Research, the Machine Learning Journal, IEEE Transactions on Information Theory, and IEEE Transactions on Neural Networks and Learning Systems.
Masashi Sugiyama is Director of the RIKEN Center for Advanced Intelligence Project and Professor of Complexity Science and Engineering at the University of Tokyo. His research interests include the theory, algorithms, and applications of machine learning. He has written several books on machine learning, including Density Ratio Estimation in Machine Learning (Cambridge, 2012). He served as program co-chair and general co-chair of the NIPS conference in 2015 and 2016, respectively, and received the Japan Academy Medal in 2017.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,34 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 9,33 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781107430761
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781107430761_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781107430761
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Variational Bayesian Learning Theory 1.79. Book. Nº de ref. del artículo: BBS-9781107430761
Cantidad disponible: 5 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2025. paperback. . . . . . Nº de ref. del artículo: V9781107430761
Cantidad disponible: 2 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 559 pages. 6.00x1.25x9.00 inches. In Stock. Nº de ref. del artículo: __1107430763
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 48407249-n
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26403384019
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 410818828
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This introduction to the theory of variational Bayesian learning summarizes recent developments and suggests practical applications. Nº de ref. del artículo: 9781107430761
Cantidad disponible: 2 disponibles