This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.
"Sinopsis" puede pertenecer a otra edición de este libro.
Joseph M. Hilbe is Solar System Ambassador with NASA's Jet Propulsion Laboratory, California Institute of Technology, Adjunct Professor of Statistics at Arizona State University, and Professor Emeritus at the University of Hawaii. He is currently President of the International Astrostatistics Association (IAA) and was awarded the IAA's 2016 Outstanding Contributions to Astrostatistics medal, the association's top award. Hilbe is an elected Fellow of both the American Statistical Association and the IAA and is a full member of the American Astronomical Society. He has authored nineteen books on statistical modeling, including leading texts on modeling count and binomial data. His book, Modeling Count Data (Cambridge, 2014) received the 2015 PROSE honorable mention for books in mathematics.
Rafael S. de Souza is a researcher at Eötvos Loránd University, Budapest. He is currently Vice-President for development of the International Astrostatistics Association (IAA) and was awarded the IAA's 2016 Outstanding Publication in Astrostatistics award. He has authored dozens of scientific papers, serving as the leading author for over twenty of them.
Emille E. O. Ishida is a researcher at the Université Clermont-Auvergne (Université Blaise Pascal), France. She is cochair of the Cosmostatistics Initiative and coordinator of its Python-related projects. She is a specialist in machine learning applications to astronomy with special interests in type Ia supernovae spectral characterization, classification, and cosmology. She has been the lead author of numerous articles in prominent astrophysics journals and currently serves as chair of the IAA public relations committee.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 92,90 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 1,42 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FM-9781107133082
Cantidad disponible: 8 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781107133082_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FM-9781107133082
Cantidad disponible: 8 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781107133082
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 424 pages. 10.00x7.75x1.00 inches. In Stock. Nº de ref. del artículo: __1107133084
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 1186. Nº de ref. del artículo: B9781107133082
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally. This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. A must-have for astronomers, its concrete focus on modeling, analysis, and interpretation will also be attractive to researchers in the sciences more broadly. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781107133082
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 424 pages. 10.00x7.75x1.00 inches. In Stock. Nº de ref. del artículo: x-1107133084
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2317530267145
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - A hands-on guide to Bayesian models with R, JAGS, Python, and Stan code, for a wide range of astronomical data types. Nº de ref. del artículo: 9781107133082
Cantidad disponible: 1 disponibles