This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks.
Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context.
Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You'll find recipes for:
"Sinopsis" puede pertenecer a otra edición de este libro.
Kyle Gallatin is a software engineer for machine learning infrastructure with years of experience as a data analyst, data scientist and machine learning engineer. He is also a professional data science mentor, volunteer computer science teacher and frequently publishes articles at the intersection of software engineering and machine learning. Currently, Kyle is a software engineer on the machine learning platform team at Etsy. Chris Albon is the Director of Machine Learning at the Wikimedia Foundation, the non-profit that hosts Wikipedia.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: World of Books (was SecondSale), Montgomery, IL, Estados Unidos de America
Condición: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00074126589
Cantidad disponible: 5 disponibles
Librería: World of Books (was SecondSale), Montgomery, IL, Estados Unidos de America
Condición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00077591640
Cantidad disponible: 2 disponibles
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_452190490
Cantidad disponible: 1 disponibles
Librería: Books From California, Simi Valley, CA, Estados Unidos de America
paperback. Condición: Very Good. Nº de ref. del artículo: mon0004003644
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 45802690-n
Cantidad disponible: Más de 20 disponibles
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
Condición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Nº de ref. del artículo: OTF-S-9781098135720
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning. Book. Nº de ref. del artículo: BBS-9781098135720
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45802690
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781098135720
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. 2nd. This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems all the way from loading data to training models and leveraging neural networks.Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications.You'll find recipes for:Vectors, matrices, and arraysWorking with data from CSV, JSON, SQL, databases, cloud storage, and other sourcesHandling numerical and categorical data, text, images, and dates and timesDimensionality reduction using feature extraction or feature selectionModel evaluation and selectionLinear and logical regression, trees and forests, and k-nearest neighborsSupport vector machines (SVM), naive Bayes, clustering, and tree-based modelsSaving and loading trained models from multiple frameworks. Nº de ref. del artículo: LU-9781098135720
Cantidad disponible: Más de 20 disponibles