Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career.
Learn how to:
"Sinopsis" puede pertenecer a otra edición de este libro.
Thomas Nield is the founder of Nield Consulting Group as well as an instructor at O'Reilly Media and University of Southern California. He enjoys making technical content relatable and relevant to those unfamiliar or intimidated by it. Thomas regularly teaches classes on data analysis, machine learning, mathematical optimization, and practical artificial intelligence. He's authored two books, including Getting Started with SQL (O'Reilly) and Learning RxJava (Packt).
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 8,51 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 4,29 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: ThriftBooks-Atlanta, AUSTELL, GA, Estados Unidos de America
Paperback. Condición: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.32. Nº de ref. del artículo: G1098102932I4N00
Cantidad disponible: 1 disponibles
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00084887261
Cantidad disponible: Más de 20 disponibles
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00085207423
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781098102937
Cantidad disponible: 15 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781098102937
Cantidad disponible: 15 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus.Practical examples with Python code will help you see how the math applies to the work you'll be doing, providing a clear understanding of how concepts work under the hood while connecting them to applications like machine learning. You'll get a solid foundation in the math essential for data science, but more importantly, you'll be able to use it to:Recognize the nuances and pitfalls of probability mathMaster statistics and hypothesis testing (and avoid common pitfalls)Discover practical applications of probability, statistics, calculus, and machine learningIntuitively understand linear algebra as a transformation of space, not just grids of numbers being multiplied and addedPerform calculus derivatives and integrals completely from scratch in PythonApply what you've learned to machine learning, including linear regression, logistic regression, and neural networks. Nº de ref. del artículo: LU-9781098102937
Cantidad disponible: Más de 20 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781098102937
Cantidad disponible: 8 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781098102937_new
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Essential Math for Data Science: Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics 1.23. Book. Nº de ref. del artículo: BBS-9781098102937
Cantidad disponible: 5 disponibles
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus.Practical examples with Python code will help you see how the math applies to the work you'll be doing, providing a clear understanding of how concepts work under the hood while connecting them to applications like machine learning. You'll get a solid foundation in the math essential for data science, but more importantly, you'll be able to use it to:Recognize the nuances and pitfalls of probability mathMaster statistics and hypothesis testing (and avoid common pitfalls)Discover practical applications of probability, statistics, calculus, and machine learningIntuitively understand linear algebra as a transformation of space, not just grids of numbers being multiplied and addedPerform calculus derivatives and integrals completely from scratch in PythonApply what you've learned to machine learning, including linear regression, logistic regression, and neural networks. Nº de ref. del artículo: LU-9781098102937
Cantidad disponible: Más de 20 disponibles