The past decade has witnessed the broad adoption of artificial intelligence and machine learning (AI/ML) technologies. However, a lack of oversight in their widespread implementation has resulted in some incidents and harmful outcomes that could have been avoided with proper risk management. Before we can realize AI/ML's true benefit, practitioners must understand how to mitigate its risks.
This book describes approaches to responsible AI--a holistic framework for improving AI/ML technology, business processes, and cultural competencies that builds on best practices in risk management, cybersecurity, data privacy, and applied social science. Authors Patrick Hall, James Curtis, and Parul Pandey created this guide for data scientists who want to improve real-world AI/ML system outcomes for organizations, consumers, and the public.
"Sinopsis" puede pertenecer a otra edición de este libro.
Patrick Hall is principal scientist at bnh.ai, a Cc.C.-based law firm focused on AI and data analytics, and visiting faculty at the George Washington University School of Business (GWSB). James Curtis is a quantitative researcher focused on US power markets and renewable resource asset management. Parul Pandey is a Machine Learning Engineer at Weights & Biases.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,92 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 4,60 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781098102432
Cantidad disponible: 10 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781098102432
Cantidad disponible: 10 disponibles
Librería: Better World Books: West, Reno, NV, Estados Unidos de America
Condición: Good. Used book that is in clean, average condition without any missing pages. Nº de ref. del artículo: 52751944-75
Cantidad disponible: 1 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781098102432
Cantidad disponible: 2 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Machine Learning for High-Risk Applications: Approaches to Responsible AI 1.64. Book. Nº de ref. del artículo: BBS-9781098102432
Cantidad disponible: 5 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781098102432_new
Cantidad disponible: 12 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 209. Nº de ref. del artículo: B9781098102432
Cantidad disponible: 10 disponibles
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00083224701
Cantidad disponible: 1 disponibles
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00084349039
Cantidad disponible: 1 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. 1st. The past decade has witnessed a wide adoption of artificial intelligence and machine learning (AI/ML) technologies. However, a lack of oversight into their widespread implementation has resulted in harmful outcomes that could have been avoided with proper oversight. Before we can realize AI/ML's true benefit, practitioners must understand how to mitigate its risks. This book describes responsible AI, a holistic approach for improving AI/ML technology, business processes, and cultural competencies that builds on best practices in risk management, cybersecurity, data privacy, and applied social science.It's an ambitious undertaking that requires a diverse set of talents, experiences, and perspectives. Data scientists and nontechnical oversight folks alike need to be recruited and empowered to audit and evaluate high-impact AI/ML systems. Author Patrick Hall created this guide for a new generation of auditors and assessors who want to make AI systems better for organizations, consumers, and the public at large.Learn how to create a successful and impactful responsible AI practiceGet a guide to existing standards, laws, and assessments for adopting AI technologiesLook at how existing roles at companies are evolving to incorporate responsible AIExamine business best practices and recommendations for implementing responsible AILearn technical approaches for responsible AI at all stages of system development. Nº de ref. del artículo: LU-9781098102432
Cantidad disponible: Más de 20 disponibles