This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability.
Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras.
You'll learn how to:
"Sinopsis" puede pertenecer a otra edición de este libro.
Valliappa (Lak) Lakshmanan is the director of analytics and AI solutions at Google Cloud, where he leads a team building cross-industry solutions to business problems. His mission is to democratize machine learning so that it can be done by anyone anywhere. Martin Goerner is a product manager for Keras/TensorFlow focused on improving the developer experience when using state-of-the-art models. He's passionate about science, technology, coding, algorithms, and everything in between. Ryan Gillard is an AI engineer in Google Cloud's Professional Services organization, where he builds ML models for a wide variety of industries. He started his career as a research scientist in the hospital and healthcare industry. With degrees in neuroscience and physics, he loves working at the intersection of those disciplines exploring intelligence through mathematics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 10,10 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 4,60 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Austin Goodwill 1101, Austin, TX, Estados Unidos de America
paperback. Condición: Good. Get fast and secure shipping knowing your purchase helps empower our community to transform their lives through work. Nº de ref. del artículo: 4RZV6M000S97
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Gut. Zustand: Gut | Seiten: 463 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 37328147/3
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781098102364
Cantidad disponible: 8 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781098102364
Cantidad disponible: 11 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781098102364
Cantidad disponible: 2 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images 1.68. Book. Nº de ref. del artículo: BBS-9781098102364
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 42834304-n
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781098102364_new
Cantidad disponible: 9 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability.Google engineers Valliappa Lakshmanan, Martin Goerner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras.You'll learn how to:Design ML architecture for computer vision tasksSelect a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your taskCreate an end-to-end ML pipeline to train, evaluate, deploy, and explain your modelPreprocess images for data augmentation and to support learnabilityIncorporate explainability and responsible AI best practicesDeploy image models as web services or on edge devicesMonitor and manage ML models. Nº de ref. del artículo: LU-9781098102364
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781098102364
Cantidad disponible: Más de 20 disponibles