Machine learning fundamentally learns from the past experiences (seen data) to make predictions about future (unseen data). Predictions in nature are often uncertain. Microbiome data have unique characteristics, including high-dimensionality, over-dispersion, sparsity and zero-inflation, and heterogeneity. Thus, machine learning involving microbiome data for predicting the outcome of phenotypes is even more uncertain than learning those data from other fields. Machine Learning for Microbiome Statistics poses many challenges for evaluating the prediction performance using appropriate metrics and independent data validation.
This unique book aims to address the challenges of machine learning statistics, emphasize the importance of performance valuation by appropriate metrics and independent data, and describe several important concepts of machine learning statistics, such as feature engineering and overfitting. It comprehensively reviews commonly used and newly developed machine learning models for microbiome research. Specifically, this book provides the step-by-step procedures to perform machine learning of microbiome data, including feature engineering, algorithm selection and optimization, performance evaluation and model testing. It comments the benefits and limitations of using machine learning for microbiome statistics and remarks on the advantages and disadvantages of each machine learning algorithm.
It will be an excellent reference book for students and academics in the field.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. Yinglin Xia is a Clinical Professor in the Department of Medicine at the University of Illinois Chicago. He has published six books on statistical analysis of microbiome and metabolomics data and more than 180 statistical methodology and research papers in peer-reviewed journals. He serves on the editorial boards of several scientific journals including as an Associate Editor of Gut Microbes and has served as a reviewer for over 100 scientific journals.
Dr. Jun Sun is a tenured Professor of Medicine at the University of Illinois Chicago and an internationally recognized expert on microbiome and human diseases, e.g., vitamin D receptor in inflammation, dysbiosis and intestinal dysfunction in amyotrophic lateral sclerosis (ALS). Her lab is the first to discover that chronic effects and molecular mechanisms of Salmonella infection and risk of colon cancer. Dr. Sun has published over 260 scientific articles in peer-reviewed journals and 10 books on microbiome.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 409598955
Cantidad disponible: 3 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26404636724
Cantidad disponible: 3 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dr. Yinglin Xia is a Clinical Professor in the Department of Medicine at the University of Illinois Chicago. He has published six books on statistical analysis of microbiome and metabolomics data and more than 180 statistical methodology and research pap. Nº de ref. del artículo: 2528735663
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18404636734
Cantidad disponible: 3 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware - Machine learning fundamentally learns from the past experiences (seen data) to make predictions about future (unseen data). Predictions in nature are often uncertain. Microbiome data have unique characteristics, including high-dimensionality, over-dispersion, sparsity and zero-inflation, and heterogeneity. Thus, machine learning involving microbiome data for predicting the outcome of phenotypes is even more uncertain than learning those data from other fields. Machine Learning for Microbiome Statistics poses many challenges for evaluating the prediction performance using appropriate metrics and independent data validation. Nº de ref. del artículo: 9781041005247
Cantidad disponible: 2 disponibles