The book presents a general mathematical framework able to detect and to characterize, from a morphological and statistical perspective, patterns hidden in spatial data. The mathematical tool employed is a Gibbs point process with interaction, which permits us to reduce the complexity of the pattern.
"Sinopsis" puede pertenecer a otra edición de este libro.
Radu S. Stoica is a full professor in mathematics at the University of Lorraine, France. His research activity connects stochastic geometry, spatial statistics, and Bayesian inference for probabilistic modeling and statistical description of random structures and patterns. The results of his work consist of tailored to the data methodologies based on Gibbs Markov models, Monte Carlo algorithms, and inference procedures, which can characterise and detect structures and patterns either hidden or directly observed in the data. The tackled application domains are astronomy, geosciences, image analysis, and network sciences. Prior to his current position, Dr. Stoica was an associate professor at University of Lille, France. He also worked as a researcher for INRAe Avignon, France, University Jaume I, Spain, and CWI Amsterdam, The Netherlands.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEOCT25-311352
Cantidad disponible: 5 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26403578339
Cantidad disponible: 4 disponibles
Librería: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Nº de ref. del artículo: SHAK311352
Cantidad disponible: 5 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 410624572
Cantidad disponible: 4 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 48410404-n
Cantidad disponible: 10 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18403578345
Cantidad disponible: 4 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 48410404-n
Cantidad disponible: 10 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 48410404
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 48410404
Cantidad disponible: 10 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. The book presents a general mathematical framework able to detect and to characterise, from a morphological and statistical perspective, patterns hidden in spatial data. The mathematical tools employed are Gibbs Markov processes, mainly marked point procesess with interaction, which permits us to reduce the complexity of the pattern. It presents the framework, step by step, in three major parts: modeling, simulation, and inference. Each of these parts contains a theoretical development followed by applications and examples.FeaturesPresents mathematical foundations for tackling pattern detection and characterisation in spatial data using marked Gibbs point processes with interactionsIncludes application examples from cosmology, environmental sciences, geology, and social networksPresents theoretical and practical details for the presented algorithms in order to be correctly and efficiently usedProvides access to C++ and R code to encourage the reader to experiment and to develop new ideasIncludes references and pointers to mathematical and applied literature to encourage further studyRandom Patterns and Structures in Spatial Data is primarily aimed at researchers in mathematics, statistics, and the above-mentioned application domains. It is accessible for advanced undergraduate and graduate students and thus could be used to teach a course. It will be of interest to any scientific researcher interested in formulating a mathematical answer to the always challenging question: what is the pattern hidden in the data? The book presents a general mathematical framework able to detect and to characterize, from a morphological and statistical perspective, patterns hidden in spatial data. The mathematical tool employed is a Gibbs point process with interaction, which permits us to reduce the complexity of the pattern. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781032459363
Cantidad disponible: 1 disponibles