The apparent contradiction between statistical significance and biological relevance has diminished the value of statistical methods as a whole in toxicology. Moreover, recommendations for statistical analysis are imprecise in most toxicological guidelines. Addressing these dilemmas, Statistics in Toxicology Using R explains the statistical analysi
"Sinopsis" puede pertenecer a otra edición de este libro.
Ludwig A. Hothorn is a professor in the Institute of Biostatistics at the Leibniz University of Hannover. Dr. Hothorn has published more than 130 papers in peer-reviewed journals and contributed numerous book chapters. His research interests include computational statistics using R as well as the application of statistical methods in biology, agriculture, medicine, life sciences, toxicology, pharmacology, and quantitative genetics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,05 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 5,33 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 209. Nº de ref. del artículo: B9781032098135
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The apparent contradiction between statistical significance and biological relevance has diminished the value of statistical methods as a whole in toxicology. Moreover, recommendations for statistical analysis are imprecise in most toxicological guidelines. Addressing these dilemmas, Statistics in Toxicology Using R explains the statistical analysis of selected experimental data in toxicology and presents assay-specific suggestions, such as for the in vitro micronucleus assay. Mostly focusing on hypothesis testing, the book covers standardized bioassays for chemicals, drugs, and environmental pollutants. It is organized according to selected toxicological assays, including: Short-term repeated toxicity studiesLong-term carcinogenicity assays Studies on reproductive toxicity Mutagenicity assays Toxicokinetic studies The book also discusses proof of safety (particularly in ecotoxicological assays), toxicogenomics, the analysis of interlaboratory studies and the modeling of dose-response relationships for risk assessment. For each toxicological problem, the author describes the statistics involved, matching data example, R code, and outcomes and their interpretation. This approach allows you to select a certain bioassay, identify the specific data structure, run the R code with the data example, understand the test outcome and interpretation, and replace the data set with your own data and run again. 254 pp. Englisch. Nº de ref. del artículo: 9781032098135
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781032098135_new
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 379162918
Cantidad disponible: 3 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781032098135
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781032098135
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Ludwig A. Hothorn is a professor in the Institute of Biostatistics at the Leibniz University of Hannover. Dr. Hothorn has published more than 130 papers in peer-reviewed journals and contributed numerous book chapters. His research inter. Nº de ref. del artículo: 487066102
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781032098135
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 43012536-n
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The apparent contradiction between statistical significance and biological relevance has diminished the value of statistical methods as a whole in toxicology. Moreover, recommendations for statistical analysis are imprecise in most toxicological guidelines. Addressing these dilemmas, Statistics in Toxicology Using R explains the statistical analysis of selected experimental data in toxicology and presents assay-specific suggestions, such as for the in vitro micronucleus assay. Mostly focusing on hypothesis testing, the book covers standardized bioassays for chemicals, drugs, and environmental pollutants. It is organized according to selected toxicological assays, including: Short-term repeated toxicity studiesLong-term carcinogenicity assays Studies on reproductive toxicity Mutagenicity assays Toxicokinetic studies The book also discusses proof of safety (particularly in ecotoxicological assays), toxicogenomics, the analysis of interlaboratory studies and the modeling of dose-response relationships for risk assessment. For each toxicological problem, the author describes the statistics involved, matching data example, R code, and outcomes and their interpretation. This approach allows you to select a certain bioassay, identify the specific data structure, run the R code with the data example, understand the test outcome and interpretation, and replace the data set with your own data and run again. Nº de ref. del artículo: 9781032098135
Cantidad disponible: 1 disponibles