This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study.
"Sinopsis" puede pertenecer a otra edición de este libro.
Daniel Sanz-Alonso is Assistant Professor in the Committee on Computational and Applied Mathematics within the Department of Statistics at the University of Chicago. His contributions to inverse problems and data assimilation have been recognized with a José Luis Rubio de Francia prize and an NSF CAREER award.
Andrew Stuart is Professor in the Computing and Mathematical Sciences Department within the Division of Engineering and Applied Sciences at Caltech. He is well known for his work in applied and computational mathematics, in the areas of dynamical systems, inverse problems, data assimilation, and machine learning.
Armeen Taeb is Assistant Professor in the Department of Statistics at the University of Washington. His work focuses on developing efficient methods for graphical modeling and latent-variable modeling, learning causal relations from data, and model selection in contemporary data analysis settings. His PhD thesis received the W. P. Carey & Co. Prize for outstanding dissertation in applied mathematics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,24 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,24 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 46044326-n
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Inverse Problems and Data Assimilation 0.68. Book. Nº de ref. del artículo: BBS-9781009414296
Cantidad disponible: 5 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781009414296
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781009414296
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46044326
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study. This concise introduction covers inverse problems and data assimilation, before exploring their inter-relations. Suitable for both classroom teaching and self-guided study, it is aimed at advanced undergraduates and beginning graduate students in mathematical sciences, together with researchers in science and engineering. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781009414296
Cantidad disponible: 1 disponibles
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Paperback. Condición: Good. 1. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Nº de ref. del artículo: 1009414291-11-1
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 330. Nº de ref. del artículo: C9781009414296
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781009414296_new
Cantidad disponible: 3 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-GRD-9781009414296
Cantidad disponible: 3 disponibles