Optimal mass transport has emerged in the past three decades as an active field with wide-ranging connections to the calculus of variations, PDEs, and geometric analysis. This graduate-level introduction covers the field's theoretical foundation and key ideas in applications. By focusing on optimal mass transport problems in a Euclidean setting, the book is able to introduce concepts in a gradual, accessible way with minimal prerequisites, while remaining technically and conceptually complete. Working in a familiar context will help readers build geometric intuition quickly and give them a strong foundation in the subject. This book explores the relation between the Monge and Kantorovich transport problems, solving the former for both the linear transport cost (which is important in geometric applications) and for the quadratic transport cost (which is central in PDE applications), starting from the solution of the latter for arbitrary transport costs.
"Sinopsis" puede pertenecer a otra edición de este libro.
Francesco Maggi is Professor of Mathematics at the University of Texas at Austin. His research interests include the calculus of variations, partial differential equations, and optimal mass transport. He is the author of Sets of Finite Perimeter and Geometric Variational Problems published by Cambridge University Press.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Second Story Books, ABAA, Rockville, MD, Estados Unidos de America
Hardcover. First Edition, First Printing. Octavo, xii, xviii, xx, 295 pages. In Very Good plus condition. Bound in the publisher's gray cloth bearing white lettering to the spine. Boards show extremely light wear. Text block has minimal wear to the edges. Illustrated. First edition, first printing. NOTE: Shelved in Netdesk Column F, ND-F. 1378203. FP New Rockville Stock. Nº de ref. del artículo: 1378203
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 45883339-n
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. Optimal mass transport has emerged in the past three decades as an active field with wide-ranging connections to the calculus of variations, PDEs, and geometric analysis. This graduate-level introduction covers the field's theoretical foundation and key ideas in applications. By focusing on optimal mass transport problems in a Euclidean setting, the book is able to introduce concepts in a gradual, accessible way with minimal prerequisites, while remaining technically and conceptually complete. Working in a familiar context will help readers build geometric intuition quickly and give them a strong foundation in the subject. This book explores the relation between the Monge and Kantorovich transport problems, solving the former for both the linear transport cost (which is important in geometric applications) and for the quadratic transport cost (which is central in PDE applications), starting from the solution of the latter for arbitrary transport costs. This is a graduate-level introduction to the key ideas and theoretical foundation of the vibrant field of optimal mass transport in the Euclidean setting. Taking a pedagogical approach, it introduces concepts gradually and in an accessible way, while also remaining technically and conceptually complete. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781009179706
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781009179706
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45883339
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 345 pages. 9.00x6.00x0.88 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __1009179705
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781009179706_new
Cantidad disponible: 3 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Hardcover. Condición: New. Nº de ref. del artículo: 6666-GRD-9781009179706
Cantidad disponible: 3 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 45883339-n
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Hardback. Condición: New. Optimal mass transport has emerged in the past three decades as an active field with wide-ranging connections to the calculus of variations, PDEs, and geometric analysis. This graduate-level introduction covers the field's theoretical foundation and key ideas in applications. By focusing on optimal mass transport problems in a Euclidean setting, the book is able to introduce concepts in a gradual, accessible way with minimal prerequisites, while remaining technically and conceptually complete. Working in a familiar context will help readers build geometric intuition quickly and give them a strong foundation in the subject. This book explores the relation between the Monge and Kantorovich transport problems, solving the former for both the linear transport cost (which is important in geometric applications) and for the quadratic transport cost (which is central in PDE applications), starting from the solution of the latter for arbitrary transport costs. Nº de ref. del artículo: LU-9781009179706
Cantidad disponible: Más de 20 disponibles