This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course.
"Sinopsis" puede pertenecer a otra edición de este libro.
John Stillwell is the author of many books on mathematics; among the best known are Mathematics and its History, Naive Lie Theory, and Elements of Mathematics. He is a member of the inaugural class of Fellows of the American Mathematical Society and winner of the Chauvenet Prize for mathematical exposition.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,06 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 10,23 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 389454014
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781009001922_new
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26390145889
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 250 pages. 9.00x6.00x0.51 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __1009001922
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course. Nº de ref. del artículo: LU-9781009001922
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781009001922
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Algebraic Number Theory for Beginners: Following a Path from Euclid to Noether 0.72. Book. Nº de ref. del artículo: BBS-9781009001922
Cantidad disponible: 5 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18390145899
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course. Nº de ref. del artículo: LU-9781009001922
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 44328004-n
Cantidad disponible: Más de 20 disponibles