This book, by the authors of the Neural Network Toolbox for MATLAB, provides a clear and detailed coverage of fundamental neural network architectures and learning rules. In it, the authors emphasize a coherent presentation of the principal neural networks, methods for training them and their applications to practical problems.FeaturesExtensive coverage of training methods for both feedforward networks (including multilayer and radial basis networks) and recurrent networks. In addition to conjugate gradient and Levenberg-Marquardt variations of the backpropagation algorithm, the text also covers Bayesian regularization and early stopping, which ensure the generalization ability of trained networks.Associative and competitive networks, including feature maps and learning vector quantization, are explained with simple building blocks.A chapter of practical training tips for function approximation, pattern recognition, clustering and prediction, along with five chapters presenting detailed real-world case studies.Detailed examples and numerous solved problems. Slides and comprehensive demonstration software can be downloaded from https://github.com/NNDesignDeepLearning.
"Sinopsis" puede pertenecer a otra edición de este libro.
Martin T. Hagan (Ph.D. Electrical Engineering, University of Kansas) has taught and conducted research in the areas of control systems and signal processing for the last 35 years. For the last 25 years his research has focused on the use of neural networks for control, filtering and prediction. He is a Professor in the School of Electrical and Computer Engineering at Oklahoma State University and a co-author of the Neural Network Toolbox for MATLAB. Howard B. Demuth (Ph.D. Electrical Engineering, Stanford University) has twenty-three years of industrial experience, primarily at Los Alamos National Laboratory, where he helped design and build one of the world's first electronic computers, the "MANIAC." Demuth has fifteen years teaching experience as well. He is co-author of the Neural Network Toolbox for MATLAB and currently teaches a Neural Network course for the University of Colorado at Boulder. Mark Hudson Beale (B.S. Computer Engineering, University of Idaho) is a software engineer with a focus on artificial intelligence algorithms and software development technology. Mark is co-author of the Neural Network Toolbox for MATLAB and provides related consulting through his company, MHB Inc., located in Hayden, Idaho. Orlando De Jesús (Ph.D. Electrical Engineering, Oklahoma State University) has twenty-four years of industrial experience, with AETI C.A. in Caracas, Venezuela, Halliburton in Carrollton, Texas and is currently working as Engineering Consultant in Frisco, Texas. Orlando’s dissertation was a basis for the dynamic network training algorithms in the Neural Network Toolbox for MATLAB.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 5,50 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 6,79 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: medimops, Berlin, Alemania
Condición: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Nº de ref. del artículo: M00971732116-G
Cantidad disponible: 2 disponibles
Librería: Greener Books, London, Reino Unido
Paperback. Condición: Used; Very Good. **SHIPPED FROM UK** We believe you will be completely satisfied with our quick and reliable service. All orders are dispatched as swiftly as possible! Buy with confidence! Greener Books. Nº de ref. del artículo: 4864654
Cantidad disponible: 1 disponibles
Librería: London Bridge Books, London, Reino Unido
paperback. Condición: Fair. Nº de ref. del artículo: 0971732116-4-31486650
Cantidad disponible: 1 disponibles
Librería: Bahamut Media, Reading, Reino Unido
Paperback. Condición: Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee. Nº de ref. del artículo: 6545-9780971732117
Cantidad disponible: 1 disponibles
Librería: AwesomeBooks, Wallingford, Reino Unido
Paperback. Condición: Very Good. Neural Network Design (2nd Edition) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. . Nº de ref. del artículo: 7719-9780971732117
Cantidad disponible: 1 disponibles
Librería: Better World Books: West, Reno, NV, Estados Unidos de America
Condición: Good. Used book that is in clean, average condition without any missing pages. Nº de ref. del artículo: 18078204-6
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Print on Demand. Nº de ref. del artículo: I-9780971732117
Cantidad disponible: Más de 20 disponibles
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00061524337
Cantidad disponible: 1 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Neural Network Design (2nd Edition) 2.98. Book. Nº de ref. del artículo: BBS-9780971732117
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 22007749-n
Cantidad disponible: Más de 20 disponibles