Artículos relacionados a Dynamic Flexible Constraint Satisfaction and its Application...

Dynamic Flexible Constraint Satisfaction and its Application to AI Planning - Tapa blanda

 
9780857293794: Dynamic Flexible Constraint Satisfaction and its Application to AI Planning

Esta edición ISBN ya no está disponible.

Sinopsis

1 Introduction.- 1.1 Solving Classical CSPs.- 1.2 Applications of Classical CSP.- 1.3 Limitations of Classical CSP.- 1.3.1 Flexible CSP.- 1.3.2 Dynamic CSP.- 1.4 Dynamic Flexible CSP.- 1.5 Flexible Planning: a DFCSP Application.- 1.6 Structure.- 1.7 Contributions and their Significance.- 2 The Constraint Satisfaction Problem.- 2.1 Constraints and Constraint Graphs.- 2.2 Tree Search Solution Techniques for Classical CSP.- 2.2.1 Backtrack.- 2.2.2 Backjumping.- 2.2.3 Conflict-Directed Backjumping.- 2.2.4 Backmarking.- 2.2.5 The Backmark Hybrids.- 2.2.6 Dynamic Backtracking.- 2.2.7 Relative Evaluation.- 2.3 Pre-Processing Techniques.- 2.3.1 Arc Consistency.- 2.3.2 Improving Efficiency in Enforcing Arc Consistency.- 2.3.3 Path Consistency.- 2.3.4 K-Consistency.- 2.3.5 Practical Consistency Enforcing.- 2.3.6 Directional Pre-Processing.- 2.4 Hybrid Tree-search Consistency-enforcing Algorithms.- 2.4.1 Partial Arc Consistency.- 2.4.2 Relative Evaluation.- 2.5 Heuristics.- 2.6 Conflict Recording.- 2.7 The Phase Transition in CSPs.- 2.8 Graph-Based Methods.- 2.8.1 The Invasion Procedure.- 2.8.2 The Cycle-Cutset Method.- 2.8.3 Non-separable Components.- 2.8.4 Tree-Clustering.- 2.9 Extending the CSP Framework.- 2.9.1 Extending Tree Search.- 2.9.2 Solution via Graph Decomposition.- 2.9.3 Additive Flexible CSP.- 2.9.4 Priority Maximisation Flexible CSP.- 2.10 Dynamic Constraint Satisfaction.- 2.10.1 Restriction/Relaxation-based Dynamic Constraint Satisfaction Problems.- 2.10.2 Recurrent Dynamic Constraint Satisfaction Problems.- 2.10.3 Activity-based Dynamic Constraint Satisfaction Problems.- 2.11 Summary.- 3 Dynamic Flexible Constraint Satisfaction.- 3.1 Towards Dynamic Flexible Constraint Satisfaction.- 3.1.1 Concepts of DFCSP.- 3.2 Examples from the Dynamic Perspective.- 3.2.1 Restriction/Relaxation-based DFCSP.- 3.2.2 Recurrent DFCSP.- 3.2.3 Activity-based DFCSP.- 3.3 A Specific Instance of DFCSP.- 3.3.1 The Flexible Component - a Recap.- 3.4 Fuzzy rrDFCSP Solution via Branch and Bound.- 3.5 Fuzzy rrDFCSP Solution via Local Repair.- 3.5.1 Local Changes.- 3.5.2 Flexible Local Changes: A Fuzzy rrDFCSP Algorithm.- 3.5.3 FLC Complexity Issues.- 3.6 Fuzzy Arc Consistency.- 3.6.1 The Complexity of Fuzzy Arc Consistency.- 3.6.2 Pre-processing with Fuzzy Arc Consistency.- 3.6.3 Hybrids.- 3.6.4 The Deletion Threshold.- 3.7 Solution Techniques for other DFCSP Instances.- 3.8 An Example.- 3.8.1 Solution of Initial Problem via Branch and Bound.- 3.8.2 Solution of Initial Problem via FLC.- 3.8.3 The Problem Changes.- 3.8.4 Solution of Updated Problem via Branch and Bound.- 3.8.5 Solution of Updated Problem via FLC.- 3.9 Summary.- 4 An Empirical Study of Fuzzy rrDFCSPs.- 4.1 The Problems.- 4.2 The Algorithms Studied.- 4.3 Evaluation Criteria.- 4.4 Heuristics Investigated.- 4.4.1 Variable Selection.- 4.4.2 Domain Element Selection.- 4.4.3 Constraint Check Selection.- 4.5 Results: 3-point Satisfaction Scale.- 4.6 Results: 4-point Satisfaction Scale.- 4.7 Results: 5-point Satisfaction Scale.- 4.8 The Utility of Dynamic Information.- 4.9 The Utility of the Deletion Threshold.- 4.10 The Utility of the Constraint Check Ordering Heuristic.- 4.11 The Utility of FLC Variable Selection Heuristics.- 4.12 The Utility of FLC Domain Element Selection Heuristics.- 4.13 Summary.- 5 Dynamic CSP in Domain-independent AI Planning.- 5.1 AI Planning.- 5.1.1 Constraint Satisfaction in Planning.- 5.2 An Overview of Graphplan.- 5.2.1 The Planning Graph.- 5.2.2 Basic Plan Extraction.- 5.2.3 Memoisation.- 5.3 Viewing the Planning Graph as a CSP.- 5.4 Plan Extraction via Dynamic Constraint Satisfaction.- 5.4.1 A Hierarchical Approach.- 5.4.2 Memoisation in the Hierarchical Context.- 5.5 The GP-rrDCSP Algorithm.- 5.5.1 The Top-level Procedure.- 5.5.2 The extract() Procedure.- 5.5.3 The propagateMS() Procedure.- 5.6 Complexity Issues.- 5.7 Avoiding Irrelevant Variables in Memosets Created by Propagation.- 5.8 Focusing the Search.- 5.8.1 Variable Selection.- 5.8.2 Value Selection.

"Sinopsis" puede pertenecer a otra edición de este libro.

(Ningún ejemplar disponible)

Buscar:



Crear una petición

¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.

Crear una petición

Otras ediciones populares con el mismo título

9781447110484: Dynamic Flexible Constraint Satisfaction and its Application to AI Planning (Distinguished Dissertations)

Edición Destacada

ISBN 10:  144711048X ISBN 13:  9781447110484
Editorial: Springer, 2012
Tapa blanda