'Operads are powerful tools, and this is the book in which to read about them' - ""Bulletin of the London Mathematical Society"". Operads are mathematical devices that describe algebraic structures of many varieties and in various categories. Operads are particularly important in categories with a good notion of 'homotopy', where they play a key role in organizing hierarchies of higher homotopies. Significant examples from algebraic topology first appeared in the sixties, although the formal definition and appropriate generality were not forged until the seventies. In the nineties, a renaissance and further development of the theory were inspired by the discovery of new relationships with graph cohomology, representation theory, algebraic geometry, derived categories, Morse theory, symplectic and contact geometry, combinatorics, knot theory, moduli spaces, cyclic cohomology, and, last but not least, theoretical physics, especially string field theory and deformation quantization. The book contains a detailed and comprehensive historical introduction describing the development of operad theory from the initial period when it was a rather specialized tool in homotopy theory to the present when operads have a wide range of applications in algebra, topology, and mathematical physics. Many results and applications currently scattered in the literature are brought together here along with new results and insights. The basic definitions and constructions are carefully explained and include many details not found in any of the standard literature.
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,21 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 11,55 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 349 pages. 9.90x7.00x0.70 inches. In Stock. Nº de ref. del artículo: __0821843621
Cantidad disponible: 1 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Operads are mathematical devices that describe algebraic structures of many varieties and in various categories. Operads are particularly important in categories with a good notion of 'homotopy', where they play a key role in organizing hierarchies of higher homotopies. This book offers an introduction describing the development of operad theory. Series: Mathematical Surveys and Monographs. Num Pages: 349 pages. BIC Classification: PBF; PBM; PBP. Category: (UP) Postgraduate, Research & Scholarly. Dimension: 256 x 176 x 19. Weight in Grams: 628. . 2007. Paperback. . . . . Nº de ref. del artículo: V9780821843628
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 349 pages. 9.90x7.00x0.70 inches. In Stock. Nº de ref. del artículo: 0821843621
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780821843628_new
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 6954120
Cantidad disponible: 2 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. Operads are mathematical devices that describe algebraic structures of many varieties and in various categories. Operads are particularly important in categories with a good notion of 'homotopy', where they play a key role in organizing hierarchies of higher homotopies. This book offers an introduction describing the development of operad theory. Series: Mathematical Surveys and Monographs. Num Pages: 349 pages. BIC Classification: PBF; PBM; PBP. Category: (UP) Postgraduate, Research & Scholarly. Dimension: 256 x 176 x 19. Weight in Grams: 628. . 2007. Paperback. . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9780821843628
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 6954120-n
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 665. Nº de ref. del artículo: B9780821843628
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - Operads are mathematical devices that describe algebraic structures of many varieties and in various categories. Operads are particularly important in categories with a good notion of 'homotopy', where they play a key role in organizing hierarchies of higher homotopies. This book offers an introduction describing the development of operad theory. Nº de ref. del artículo: 9780821843628
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 6954120-n
Cantidad disponible: 2 disponibles