Having been out of print for over 10 years, the AMS is delighted to bring this classic volume back to the mathematical community. With this fine exposition, the author gives a cohesive account of the theory of probability measures on complete metric spaces (which he views as an alternative approach to the general theory of stochastic processes). After a general description of the basics of topology on the set of measures, he discusses regularity, tightness, and perfectness of measures, properties of sampling distributions, and metrizability and compactness theorems.Next, he describes arithmetic properties of probability measures on metric groups and locally compact abelian groups. Covered in detail are notions such as decomposability, infinite divisibility, idempotence, and their relevance to limit theorems for 'sums' of infinitesimal random variables. The book concludes with numerous results related to limit theorems for probability measures on Hilbert spaces and on the spaces $C[0,1]$. ""The Mathematical Reviews"" comments about the original edition of this book are as true today as they were in 1967. It remains a compelling work and a priceless resource for learning about the theory of probability measures. The volume is suitable for graduate students and researchers interested in probability and stochastic processes and would make an ideal supplementary reading or independent study text.
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 26,55 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 2,00 gastos de envío desde Irlanda a España
Destinos, gastos y plazos de envíoLibrería: Winged Monkey Books, Arlington, VA, Estados Unidos de America
Later Printing. Hardcover, very good with light wear. Book. Nº de ref. del artículo: 024428
Cantidad disponible: 1 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2005. New edition. Hardcover. Presents an account of the theory of probability measures on complete metric spaces. This title includes a description of the basics of topology on the set of measures. It discusses regularity, tightness, and perfectness of measures, properties of sampling distributions, and metrizability and compactness theorems. Series: AMS Chelsea Publishing. Num Pages: 276 pages, illustrations. BIC Classification: PBT. Category: (P) Professional & Vocational. Dimension: 260 x 182 x 12. Weight in Grams: 670. . . . . . Nº de ref. del artículo: V9780821838891
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Hardback. Condición: New. Having been out of print for over 10 years, the AMS is delighted to bring this classic volume back to the mathematical community. With this fine exposition, the author gives a cohesive account of the theory of probability measures on complete metric spaces (which he views as an alternative approach to the general theory of stochastic processes). After a general description of the basics of topology on the set of measures, he discusses regularity, tightness, and perfectness of measures, properties of sampling distributions, and metrizability and compactness theorems.Next, he describes arithmetic properties of probability measures on metric groups and locally compact abelian groups. Covered in detail are notions such as decomposability, infinite divisibility, idempotence, and their relevance to limit theorems for 'sums' of infinitesimal random variables. The book concludes with numerous results related to limit theorems for probability measures on Hilbert spaces and on the spaces $C[0,1]$. ""The Mathematical Reviews"" comments about the original edition of this book are as true today as they were in 1967. It remains a compelling work and a priceless resource for learning about the theory of probability measures. The volume is suitable for graduate students and researchers interested in probability and stochastic processes and would make an ideal supplementary reading or independent study text. Nº de ref. del artículo: LU-9780821838891
Cantidad disponible: 2 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. 2005. New edition. Hardcover. Presents an account of the theory of probability measures on complete metric spaces. This title includes a description of the basics of topology on the set of measures. It discusses regularity, tightness, and perfectness of measures, properties of sampling distributions, and metrizability and compactness theorems. Series: AMS Chelsea Publishing. Num Pages: 276 pages, illustrations. BIC Classification: PBT. Category: (P) Professional & Vocational. Dimension: 260 x 182 x 12. Weight in Grams: 670. . . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9780821838891
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. new edition edition. 276 pages. 10.24x7.17x0.79 inches. In Stock. Nº de ref. del artículo: __082183889X
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Hardback. Condición: New. Having been out of print for over 10 years, the AMS is delighted to bring this classic volume back to the mathematical community. With this fine exposition, the author gives a cohesive account of the theory of probability measures on complete metric spaces (which he views as an alternative approach to the general theory of stochastic processes). After a general description of the basics of topology on the set of measures, he discusses regularity, tightness, and perfectness of measures, properties of sampling distributions, and metrizability and compactness theorems.Next, he describes arithmetic properties of probability measures on metric groups and locally compact abelian groups. Covered in detail are notions such as decomposability, infinite divisibility, idempotence, and their relevance to limit theorems for 'sums' of infinitesimal random variables. The book concludes with numerous results related to limit theorems for probability measures on Hilbert spaces and on the spaces $C[0,1]$. ""The Mathematical Reviews"" comments about the original edition of this book are as true today as they were in 1967. It remains a compelling work and a priceless resource for learning about the theory of probability measures. The volume is suitable for graduate students and researchers interested in probability and stochastic processes and would make an ideal supplementary reading or independent study text. Nº de ref. del artículo: LU-9780821838891
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 684. Nº de ref. del artículo: B9780821838891
Cantidad disponible: 4 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 6019553-n
Cantidad disponible: 5 disponibles
Librería: moluna, Greven, Alemania
Einband - fest (Hardcover). Condición: New. Presents an account of the theory of probability measures on complete metric spaces. This title includes a description of the basics of topology on the set of measures. It discusses regularity, tightness, and perfectness of measures, properties of sampling . Nº de ref. del artículo: 613929324
Cantidad disponible: 3 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. xi + 276 Illus. Nº de ref. del artículo: 7954549
Cantidad disponible: 3 disponibles