Artículos relacionados a The Role of the Spectrum in the Cyclic Behavior of...

The Role of the Spectrum in the Cyclic Behavior of Composition Operators (Memoirs of the American Mathematical Society) - Tapa blanda

 
9780821834329: The Role of the Spectrum in the Cyclic Behavior of Composition Operators (Memoirs of the American Mathematical Society)

Sinopsis

A bounded operator $T$ acting on a Hilbert space $\mathcal H$ is called cyclic if there is a vector $x$ such that the linear span of the orbit $\{T^n x: n \geq 0 \}$ is dense in $\mathcal H$. If the scalar multiples of the orbit are dense, then $T$ is called supercyclic. Finally, if the orbit itself is dense, then $T$ is called hyper cyclic. We completely characterize the cyclicity, the supercyclicity and the hypercyclicity of scalar multiples of composition operators, whose symbols are linear fractional maps, acting on weighted Dirichlet spaces. Particular instances of these spaces are the Bergman space, the Hardy space, and the Dirichlet space.Thus, we complete earlier work on cyclicity of linear fractional composition operators on these spaces. In this way, we find exactly the spaces in which these composition operators fail to be cyclic, supercyclic or hyper cyclic. Consequently, we answer some open questions posed by Zorboska. In almost all the cases, the cut-off of cyclicity, supercyclicity or hypercyclicity of scalar multiples is determined by the spectrum. We will find that the Dirichlet space plays a critical role in the cut-off.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

A bounded operator $T$ acting on a Hilbert space $\mathcal H$ is called cyclic if there is a vector $x$ such that the linear span of the orbit $\{T^n x: n \geq 0 \}$ is dense in $\mathcal H$. If the scalar multiples of the orbit are dense, then $T$ is called supercyclic. Finally, if the orbit itself is dense, then $T$ is called hyper cyclic. We completely characterize the cyclicity, the supercyclicity and the hypercyclicity of scalar multiples of composition operators, whose symbols are linear fractional maps, acting on weighted Dirichlet spaces. Particular instances of these spaces are the Bergman space, the Hardy space, and the Dirichlet space.Thus, we complete earlier work on cyclicity of linear fractional composition operators on these spaces. In this way, we find exactly the spaces in which these composition operators fail to be cyclic, supercyclic or hyper cyclic. Consequently, we answer some open questions posed by Zorboska. In almost all the cases, the cut-off of cyclicity, supercyclicity or hypercyclicity of scalar multiples is determined by the spectrum. We will find that the Dirichlet space plays a critical role in the cut-off.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Ex-library with stamp and library-signature...
Ver este artículo

EUR 7,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para The Role of the Spectrum in the Cyclic Behavior of...

Imagen del vendedor

Gallardo-Gutierrez, Eva A.; Montes-Rodriguez, Alfonso
ISBN 10: 0821834320 ISBN 13: 9780821834329
Antiguo o usado Softcover

Librería: Antiquariat Bookfarm, Löbnitz, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02546 9780821834329 Sprache: Englisch Gewicht in Gramm: 150. Nº de ref. del artículo: 2488414

Contactar al vendedor

Comprar usado

EUR 5,00
Convertir moneda
Gastos de envío: EUR 7,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito