Riesz space (or a vector lattice) is an ordered vector space that is simultaneously a lattice. A topological Riesz space (also called a locally solid Riesz space) is a Riesz space equipped with a linear topology that has a base consisting of solid sets. Riesz spaces and ordered vector spaces play an important role in analysis and optimization. They also provide the natural framework for any modern theory of integration.This monograph is the revised edition of the authors' book ""Locally Solid Riesz Spaces"" (1978, Academic Press). It presents an extensive and detailed study (with complete proofs) of topological Riesz spaces. The book starts with a comprehensive exposition of the algebraic and lattice properties of Riesz spaces and the basic properties of order bounded operators between Riesz spaces. Subsequently, it introduces and studies locally solid topologies on Riesz spaces - the main link between order and topology used in this monograph. Special attention is paid to several continuity properties relating the order and topological structures of Riesz spaces, the most important of which are the Lebesgue and Fatou properties.A new chapter presents some surprising applications of topological Riesz spaces to economics. In particular, it demonstrates that the existence of economic equilibria and the supportability of optimal allocations by prices in the classical economic models can be proven easily using techniques from the theory of topological Riesz spaces. At the end of each chapter there are exercises that complement and supplement the material in the chapter. The last chapter of the book presents complete solutions to all exercises. Prerequisites are the fundamentals of real analysis, measure theory, and functional analysis. This monograph will be useful to researchers and graduate students in mathematics. It will also be an important reference tool to mathematical economists and to all scientists and engineers who use order structures in their research.
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Riesz space (or a vector lattice) is an ordered vector space that is simultaneously a lattice. A topological Riesz space (also called a locally solid Riesz space) is a Riesz space equipped with a linear topology that has a base consisting of solid sets. This book presents a study (with complete proofs) of topological Riesz spaces. Series: Mathematical Surveys and Monographs. Num Pages: 344 pages. BIC Classification: KC; PBKF. Category: (UU) Undergraduate. Dimension: 186 x 261 x 23. Weight in Grams: 812. . 2003. 2nd Edition. Hardcover. . . . . Nº de ref. del artículo: V9780821834084
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 2nd edition. 344 pages. 10.25x7.25x1.00 inches. In Stock. Nº de ref. del artículo: __0821834088
Cantidad disponible: 1 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. Riesz space (or a vector lattice) is an ordered vector space that is simultaneously a lattice. A topological Riesz space (also called a locally solid Riesz space) is a Riesz space equipped with a linear topology that has a base consisting of solid sets. This book presents a study (with complete proofs) of topological Riesz spaces. Series: Mathematical Surveys and Monographs. Num Pages: 344 pages. BIC Classification: KC; PBKF. Category: (UU) Undergraduate. Dimension: 186 x 261 x 23. Weight in Grams: 812. . 2003. 2nd Edition. Hardcover. . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9780821834084
Cantidad disponible: 1 disponibles