Artículos relacionados a Elliptic Partial Differential Operators and Symplectic...

Elliptic Partial Differential Operators and Symplectic Algebra (Memoirs of the American Mathematical Society) - Tapa blanda

 
9780821832356: Elliptic Partial Differential Operators and Symplectic Algebra (Memoirs of the American Mathematical Society)

Sinopsis

This investigation introduces a new description and classification for the set of all self-adjoint operators (not just those defined by differential boundary conditions) which are generated by a linear elliptic partial differential expression $A(\mathbf{x},D)=\sum_{0\,\leq\,\lefts\right\,\leq\,2m}a_{s} (\mathbf{x})D^{s}\;\text{for all}\;\mathbf{x}\in\Omega$ in a region $\Omega$, with compact closure $\overline{\Omega}$ and $C^{\infty}$-smooth boundary $\partial\Omega$, in Euclidean space $\mathbb{E}^{r}$ $(r\geq2).$ The order $2m\geq2$ and the spatial dimension $r\geq2$ are arbitrary. We assume that the coefficients $a_{s}\in C^{\infty}(\overline {\Omega})$ are complex-valued, except real for the highest order terms (where $\lefts\right =2m$) which satisfy the uniform ellipticity condition in $\overline{\Omega}$.In addition, $A(\cdot,D)$ is Lagrange symmetric so that the corresponding linear operator $A$, on its classical domain $D(A):=C_{0}^{\infty}(\Omega)\subset L_{2}(\Omega)$, is symmetric; for example the familiar Laplacian $\Delta$ and the higher order polyharmonic operators $\Delta^{m}$. Through the methods of complex symplectic algebra, which the authors have previously developed for ordinary differential operators, the Stone-von Neumann theory of symmetric linear operators in Hilbert space is reformulated and adapted to the determination of all self-adjoint extensions of $A$ on $D(A)$, by means of an abstract generalization of the Glazman-Krein-Naimark (GKN) Theorem.In particular the authors construct a natural bijective correspondence between the set $\{T\}$ of all such self-adjoint operators on domains $D(T)\supset D(A)$, and the set $\{\mathsf{L}\}$ of all complete Lagrangian subspaces of the boundary complex symplectic space $\mathsf{S}=D(T_{1}\,/\,D(T_{0})$, where $T_{0}$ on $D(T_{0})$ and $T_{1}$ on $D(T_{1})$ are the minimal and maximal operators, respectively, determined by $A$ on $D(A)\subset L_{2}(\Omega)$. In the case of the elliptic partial differential operator $A$, we verify $D(T_{0})=\overset{\text{o}}{W}{}^{2m}(\Omega)$ and provide a novel definition and structural analysis for $D(T_{1})=\overset{A}{W}{}^{2m}(\Omega)$, which extends the GKN-theory from ordinary differential operators to a certain class of elliptic partial differential operators.Thus the boundary complex symplectic space $\mathsf{S}=\overset{A} {W} {}^{2m}(\Omega)\,/\,\overset{\text{o}}{W}{}^{2m}(\Omega)$ effects a classification of all self-adjoint extensions of $A$ on $D(A)$, including those operators that are not specified by differential boundary conditions, but instead by global (i. e. non-local) generalized boundary conditions. The scope of the theory is illustrated by several familiar, and other quite unusual, self-adjoint operators described in special examples. An Appendix is attached to present the basic definitions and concepts of differential topology and functional analysis on differentiable manifolds. In this Appendix care is taken to list and explain all special mathematical terms and symbols - in particular, the notations for Sobolev Hilbert spaces and the appropriate trace theorems. An Acknowledgment and subject Index complete this memoir.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

This investigation introduces a new description and classification for the set of all self-adjoint operators (not just those defined by differential boundary conditions) which are generated by a linear elliptic partial differential expression $A(\mathbf{x},D)=\sum_{0\,\leq\,\lefts\right\,\leq\,2m}a_{s} (\mathbf{x})D^{s}\;\text{for all}\;\mathbf{x}\in\Omega$ in a region $\Omega$, with compact closure $\overline{\Omega}$ and $C^{\infty}$-smooth boundary $\partial\Omega$, in Euclidean space $\mathbb{E}^{r}$ $(r\geq2).$ The order $2m\geq2$ and the spatial dimension $r\geq2$ are arbitrary. We assume that the coefficients $a_{s}\in C^{\infty}(\overline {\Omega})$ are complex-valued, except real for the highest order terms (where $\lefts\right =2m$) which satisfy the uniform ellipticity condition in $\overline{\Omega}$.In addition, $A(\cdot,D)$ is Lagrange symmetric so that the corresponding linear operator $A$, on its classical domain $D(A):=C_{0}^{\infty}(\Omega)\subset L_{2}(\Omega)$, is symmetric; for example the familiar Laplacian $\Delta$ and the higher order polyharmonic operators $\Delta^{m}$. Through the methods of complex symplectic algebra, which the authors have previously developed for ordinary differential operators, the Stone-von Neumann theory of symmetric linear operators in Hilbert space is reformulated and adapted to the determination of all self-adjoint extensions of $A$ on $D(A)$, by means of an abstract generalization of the Glazman-Krein-Naimark (GKN) Theorem.In particular the authors construct a natural bijective correspondence between the set $\{T\}$ of all such self-adjoint operators on domains $D(T)\supset D(A)$, and the set $\{\mathsf{L}\}$ of all complete Lagrangian subspaces of the boundary complex symplectic space $\mathsf{S}=D(T_{1}\,/\,D(T_{0})$, where $T_{0}$ on $D(T_{0})$ and $T_{1}$ on $D(T_{1})$ are the minimal and maximal operators, respectively, determined by $A$ on $D(A)\subset L_{2}(\Omega)$. In the case of the elliptic partial differential operator $A$, we verify $D(T_{0})=\overset{\text{o}}{W}{}^{2m}(\Omega)$ and provide a novel definition and structural analysis for $D(T_{1})=\overset{A}{W}{}^{2m}(\Omega)$, which extends the GKN-theory from ordinary differential operators to a certain class of elliptic partial differential operators.Thus the boundary complex symplectic space $\mathsf{S}=\overset{A} {W} {}^{2m}(\Omega)\,/\,\overset{\text{o}}{W}{}^{2m}(\Omega)$ effects a classification of all self-adjoint extensions of $A$ on $D(A)$, including those operators that are not specified by differential boundary conditions, but instead by global (i. e. non-local) generalized boundary conditions. The scope of the theory is illustrated by several familiar, and other quite unusual, self-adjoint operators described in special examples. An Appendix is attached to present the basic definitions and concepts of differential topology and functional analysis on differentiable manifolds. In this Appendix care is taken to list and explain all special mathematical terms and symbols - in particular, the notations for Sobolev Hilbert spaces and the appropriate trace theorems. An Acknowledgment and subject Index complete this memoir.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Ex-library in GOOD condition with...
Ver este artículo

EUR 7,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Elliptic Partial Differential Operators and Symplectic...

Imagen del vendedor

Everitt, W. N.; Markus, L.
ISBN 10: 0821832352 ISBN 13: 9780821832356
Antiguo o usado Softcover

Librería: Antiquariat Bookfarm, Löbnitz, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Softcover. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-00277 9780821832356 Sprache: Englisch Gewicht in Gramm: 150. Nº de ref. del artículo: 2482785

Contactar al vendedor

Comprar usado

EUR 72,30
Convertir moneda
Gastos de envío: EUR 7,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Everitt, W. N., Markus, L.
Publicado por Amer Mathematical Society, 2003
ISBN 10: 0821832352 ISBN 13: 9780821832356
Antiguo o usado Tapa blanda

Librería: PAPER CAVALIER US, Brooklyn, NY, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: very good. Gently used. May include previous owner's signature or bookplate on the front endpaper, sticker on back and/or remainder mark on text block. Nº de ref. del artículo: 9780821832356-3

Contactar al vendedor

Comprar usado

EUR 70,44
Convertir moneda
Gastos de envío: EUR 10,26
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito