Artículos relacionados a Loop Groups Discrete Versions Of Some Classical Integrable...

Loop Groups Discrete Versions Of Some Classical Integrable Systems And Rank 2 Extensions (Memoirs of the American Mathematical Society) - Tapa blanda

 
9780821825402: Loop Groups Discrete Versions Of Some Classical Integrable Systems And Rank 2 Extensions (Memoirs of the American Mathematical Society)

Sinopsis

The theory of classical R-matrices provides a unified approach to the understanding of most, if not all, known integrable systems. This work, which is suitable as a graduate textbook in the modern theory of integrable systems, presents an exposition of R-matrix theory by means of examples, some old, some new. In particular, the authors construct continuous versions of a variety of discrete systems of the type introduced recently by Moser and Vesclov. In the framework the authors establish, these discrete systems appear as time-one maps of integrable Hamiltonian flows on co-adjoint orbits of appropriate loop groups, which are in turn constructed from more primitive loop groups by means of classical R-matrix theory. Examples include the discrete Euler-Arnold top and the billiard ball problem in an elliptical region in n dimensions. Earlier results of Moser on rank 2 extensions of a fixed matrix can be incorporated into this framework, which implies in particular that many well-known integrable systems - such as the Neumann system, periodic Toda, geodesic flow on an ellipsoid, etc. - can also be ysed by this method.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

The theory of classical R-matrices provides a unified approach to the understanding of most, if not all, known integrable systems. This work, which is suitable as a graduate textbook in the modern theory of integrable systems, presents an exposition of R-matrix theory by means of examples, some old, some new. In particular, the authors construct continuous versions of a variety of discrete systems of the type introduced recently by Moser and Vesclov. In the framework the authors establish, these discrete systems appear as time-one maps of integrable Hamiltonian flows on co-adjoint orbits of appropriate loop groups, which are in turn constructed from more primitive loop groups by means of classical R-matrix theory. Examples include the discrete Euler-Arnold top and the billiard ball problem in an elliptical region in n dimensions. Earlier results of Moser on rank 2 extensions of a fixed matrix can be incorporated into this framework, which implies in particular that many well-known integrable systems - such as the Neumann system, periodic Toda, geodesic flow on an ellipsoid, etc. - can also be analysed by this method.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Ehem. Bibliotheksexemplar mit Signatur...
Ver este artículo

EUR 16,00 gastos de envío desde Alemania a Estados Unidos de America

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Loop Groups Discrete Versions Of Some Classical Integrable...

Imagen del vendedor

Deift, Percy; Li, Luen-Chau; Tomei, Carlos
ISBN 10: 0821825402 ISBN 13: 9780821825402
Antiguo o usado Softcover

Librería: Antiquariat Bookfarm, Löbnitz, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Softcover. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-00848 9780821825402 Sprache: Englisch Gewicht in Gramm: 150. Nº de ref. del artículo: 2484687

Contactar al vendedor

Comprar usado

EUR 8,84
Convertir moneda
Gastos de envío: EUR 16,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito