We have been curious about numbers - and prime numbers - since antiquity. One notable new direction this century in the study of primes has been the influx of ideas from probability. The goal of this book is to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. There are two ways in which the book is exceptional. First, some familiar topics are covered with refreshing insight and/or from new points of view. Second, interesting recent developments and ideas are presented that shed new light on the prime numbers and their distribution among the rest of the integers. The book begins with a chapter covering some classic topics, such as quadratic residues and the Sieve of Eratosthenes. Also discussed are other sieves, primes in cryptography, twin primes, and more.Two separate chapters address the asymptotic distribution of prime numbers. In the first of these, the familiar link between $\zeta(s)$ and the distribution of primes is covered with remarkable efficiency and intuition. The later chapter presents a walk through an elementary proof of the Prime Number Theorem. To help the novice understand the 'why' of the proof, connections are made along the way with more familiar results such as Stirling's formula. A most distinctive chapter covers the stochastic properties of prime numbers. The authors present a wonderfully clever interpretation of primes in arithmetic progressions as a phenomenon in probability. They also describe Cramer's model, which provides a probabilistic intuition for formulating conjectures that have a habit of being true.In this context, they address interesting questions about equipartition modulo $1$ for sequences involving prime numbers. The final section of the chapter compares geometric visualizations of random sequences with the visualizations for similar sequences derived from the primes. The resulting pictures are striking and illuminating. The book concludes with a chapter on the outstanding big conjectures about prime numbers. This book is suitable for anyone who has had a little number theory and some advanced calculus involving estimates. Its engaging style and invigorating point of view will make refreshing reading for advanced undergraduates through research mathematicians. This book is the English translation of the French edition.
"Sinopsis" puede pertenecer a otra edición de este libro.
A wealth of information ... the exposition and the translation are excellent. (MAA Monthly )
A wonderful book ... marvelous. (MAA Online )
We have been curious about numbers--and prime numbers--since antiquity. One notable new direction this century in the study of primes has been the influx of ideas from probability. The goal of this book is to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. There are two ways in which the book is exceptional. First, some familiar topics are covered with refreshing insight and/or from new points of view. Second, interesting recent developments and ideas are presented that shed new light on the prime numbers and their distribution among the rest of the integers. The book begins with a chapter covering some classic topics, such as quadratic residues and the Sieve of Eratosthenes. Also discussed are other sieves, primes in cryptography, twin primes, and more. Two separate chapters address the Riemann zeta function and its connections to number theory. In the first chapter, the familiar link between $\zeta(s)$ and the distribution of primes is covered with remarkable efficiency and intuition. The second chapter presents a walk through an elementary proof of the Prime Number Theorem. To help the novice understand the "'why" of the proof, connections are made along the way with more familiar results such as Stirling's formula. A most distinctive chapter covers the stochastic properties of prime numbers. The authors present a wonderfully clever interpretation of primes in arithmetic progressions as a phenomenon in probability. They also describe Cramér's model, which provides a probabilistic intuition for formulating conjectures that have a habit of being true. In this context, they address interesting questions about equipartition modulo $1$ for sequences involving prime numbers. The final section of the chapter compares geometric visualizations of random sequences with the visualizations for similar sequences derived from the primes. The resulting pictures are striking and illuminating. The book concludes with a chapter on the outstanding big conjectures about prime numbers. This book is suitable for anyone who has had a little number theory and some advanced calculus involving estimates. Its engaging style and invigorating point of view will make refreshing reading for advanced undergraduates through research mathematicians. This book is the English translation from the French edition.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 32,17 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 11,54 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 115 pages. 8.50x5.50x0.25 inches. In Stock. Nº de ref. del artículo: 0821816470
Cantidad disponible: 1 disponibles
Librería: BookHolders, Towson, MD, Estados Unidos de America
Condición: Good. [ No Hassle 30 Day Returns ][ Ships Daily ] [ Underlining/Highlighting: NONE ] [ Writing: NONE ] [ Edition: Reprint ] Publisher: American Mathematical Society Pub Date: 5/5/2000 Binding: Paperback Pages: 115 Reprint edition. Nº de ref. del artículo: 6895918
Cantidad disponible: 1 disponibles
Librería: MostlyAcademic, Berrima, NSW, Australia
Soft cover. Condición: As New. Shelf wear. Nº de ref. del artículo: ABE-1738296900430
Cantidad disponible: 1 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2000. Paperback. We have been curious about numbers - and prime numbers - since antiquity. One notable direction this century in the study of primes has been the influx of ideas from probability. This book intends to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. Series: Student Mathematical Library. Num Pages: 120 pages, Illustrations. BIC Classification: PBH; PBT. Category: (P) Professional & Vocational. Dimension: 150 x 216 x 7. Weight in Grams: 170. . . . . . Nº de ref. del artículo: V9780821816479
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. We have been curious about numbers - and prime numbers - since antiquity. One notable new direction this century in the study of primes has been the influx of ideas from probability. The goal of this book is to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. There are two ways in which the book is exceptional. First, some familiar topics are covered with refreshing insight and/or from new points of view. Second, interesting recent developments and ideas are presented that shed new light on the prime numbers and their distribution among the rest of the integers. The book begins with a chapter covering some classic topics, such as quadratic residues and the Sieve of Eratosthenes. Also discussed are other sieves, primes in cryptography, twin primes, and more.Two separate chapters address the asymptotic distribution of prime numbers. In the first of these, the familiar link between $\zeta(s)$ and the distribution of primes is covered with remarkable efficiency and intuition. The later chapter presents a walk through an elementary proof of the Prime Number Theorem. To help the novice understand the 'why' of the proof, connections are made along the way with more familiar results such as Stirling's formula. A most distinctive chapter covers the stochastic properties of prime numbers. The authors present a wonderfully clever interpretation of primes in arithmetic progressions as a phenomenon in probability. They also describe Cramer's model, which provides a probabilistic intuition for formulating conjectures that have a habit of being true.In this context, they address interesting questions about equipartition modulo $1$ for sequences involving prime numbers. The final section of the chapter compares geometric visualizations of random sequences with the visualizations for similar sequences derived from the primes. The resulting pictures are striking and illuminating. The book concludes with a chapter on the outstanding big conjectures about prime numbers. This book is suitable for anyone who has had a little number theory and some advanced calculus involving estimates. Its engaging style and invigorating point of view will make refreshing reading for advanced undergraduates through research mathematicians. This book is the English translation of the French edition. Nº de ref. del artículo: LU-9780821816479
Cantidad disponible: 3 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. We have been curious about numbers - and prime numbers - since antiquity. One notable new direction this century in the study of primes has been the influx of ideas from probability. The goal of this book is to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. There are two ways in which the book is exceptional. First, some familiar topics are covered with refreshing insight and/or from new points of view. Second, interesting recent developments and ideas are presented that shed new light on the prime numbers and their distribution among the rest of the integers. The book begins with a chapter covering some classic topics, such as quadratic residues and the Sieve of Eratosthenes. Also discussed are other sieves, primes in cryptography, twin primes, and more.Two separate chapters address the asymptotic distribution of prime numbers. In the first of these, the familiar link between $\zeta(s)$ and the distribution of primes is covered with remarkable efficiency and intuition. The later chapter presents a walk through an elementary proof of the Prime Number Theorem. To help the novice understand the 'why' of the proof, connections are made along the way with more familiar results such as Stirling's formula. A most distinctive chapter covers the stochastic properties of prime numbers. The authors present a wonderfully clever interpretation of primes in arithmetic progressions as a phenomenon in probability. They also describe Cramer's model, which provides a probabilistic intuition for formulating conjectures that have a habit of being true.In this context, they address interesting questions about equipartition modulo $1$ for sequences involving prime numbers. The final section of the chapter compares geometric visualizations of random sequences with the visualizations for similar sequences derived from the primes. The resulting pictures are striking and illuminating. The book concludes with a chapter on the outstanding big conjectures about prime numbers. This book is suitable for anyone who has had a little number theory and some advanced calculus involving estimates. Its engaging style and invigorating point of view will make refreshing reading for advanced undergraduates through research mathematicians. This book is the English translation of the French edition. Nº de ref. del artículo: LU-9780821816479
Cantidad disponible: 3 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. 2000. Paperback. We have been curious about numbers - and prime numbers - since antiquity. One notable direction this century in the study of primes has been the influx of ideas from probability. This book intends to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. Series: Student Mathematical Library. Num Pages: 120 pages, Illustrations. BIC Classification: PBH; PBT. Category: (P) Professional & Vocational. Dimension: 150 x 216 x 7. Weight in Grams: 170. . . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9780821816479
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 199. Nº de ref. del artículo: B9780821816479
Cantidad disponible: 6 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9780821816479
Cantidad disponible: 6 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 6020348-n
Cantidad disponible: 6 disponibles