The notion of stability of functional equations of several variables in the sense used here had its origins more than half a century ago when S. Ulam posed the fundamental problem and Donald H. Hyers gave the first significant partial solution in 1941. The subject has been revised and de veloped by an increasing number of mathematicians, particularly during the last two decades. Three survey articles have been written on the subject by D. H. Hyers (1983), D. H. Hyers and Th. M. Rassias (1992), and most recently by G. L. Forti (1995). None of these works included proofs of the results which were discussed. Furthermore, it should be mentioned that wider interest in this subject area has increased substantially over the last years, yet the pre sentation of research has been confined mainly to journal articles. The time seems ripe for a comprehensive introduction to this subject, which is the purpose of the present work. This book is the first to cover the classical results along with current research in the subject. An attempt has been made to present the material in an integrated and self-contained fashion. In addition to the main topic of the stability of certain functional equa tions, some other related problems are discussed, including the stability of the convex functional inequality and the stability of minimum points. A sad note. During the final stages of the manuscript our beloved co author and friend Professor Donald H. Hyers passed away.
"Sinopsis" puede pertenecer a otra edición de este libro.
"...The book under review is an exhaustive presentation of the results in the field, not called Hyers-Ulam stability. It contains chapters on approximately additive and linear mappings, stability of the quadratic functional equation, approximately multiplicative mappings, functions with bounded differences, approximately convex functions. The book is of interest not only for people working in functional equations but also for all mathematicians interested in functional analysis."
–Zentralblatt Math
"Contains survey results on the stability of a wide class of functional equations and therefore, in particular, it would be interesting for everyone who works in functional equations theory as well as in the theory of approximation."
–Mathematical Reviews
The notion of stability of functional equations of several variables in the sense used here had its origins more than half a century ago when S. Ulam posed the fundamental problem and Donald H. Hyers gave the first significant partial solution in 1941. The subject has been revised and de veloped by an increasing number of mathematicians, particularly during the last two decades. Three survey articles have been written on the subject by D. H. Hyers (1983), D. H. Hyers and Th. M. Rassias (1992), and most recently by G. L. Forti (1995). None of these works included proofs of the results which were discussed. Furthermore, it should be mentioned that wider interest in this subject area has increased substantially over the last years, yet the pre sentation of research has been confined mainly to journal articles. The time seems ripe for a comprehensive introduction to this subject, which is the purpose of the present work. This book is the first to cover the classical results along with current research in the subject. An attempt has been made to present the material in an integrated and self-contained fashion. In addition to the main topic of the stability of certain functional equa tions, some other related problems are discussed, including the stability of the convex functional inequality and the stability of minimum points. A sad note. During the final stages of the manuscript our beloved co author and friend Professor Donald H. Hyers passed away.
"Sobre este título" puede pertenecer a otra edición de este libro.
GRATIS gastos de envío desde Australia a España
Destinos, gastos y plazos de envíoEUR 10,23 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 330 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Nº de ref. del artículo: 5852314
Cantidad disponible: 4 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-72501
Cantidad disponible: 5 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 330. Nº de ref. del artículo: 263076933
Cantidad disponible: 4 disponibles
Librería: SMASS Sellers, IRVING, TX, Estados Unidos de America
Condición: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Nº de ref. del artículo: ASNT3-72501
Cantidad disponible: 5 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-623
Cantidad disponible: 5 disponibles
Librería: ALLBOOKS1, Direk, SA, Australia
Nº de ref. del artículo: SHUB129976
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 330. Nº de ref. del artículo: 183076943
Cantidad disponible: 4 disponibles
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
Hardcover. 313 S. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02129 9780817640248 Sprache: Englisch Gewicht in Gramm: 1150. Nº de ref. del artículo: 2487973
Cantidad disponible: 1 disponibles
Librería: SMASS Sellers, IRVING, TX, Estados Unidos de America
Condición: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Nº de ref. del artículo: ASNT3-623
Cantidad disponible: 5 disponibles
Librería: ALLBOOKS1, Direk, SA, Australia
Nº de ref. del artículo: SHUB129977
Cantidad disponible: 20 disponibles