Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
"Sinopsis" puede pertenecer a otra edición de este libro.
Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 10,28 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Bookfarm, Löbnitz, Alemania
Hardcover. XIV, 112 S. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02604 9780817638108 Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 2488474
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 113. Nº de ref. del artículo: 7547383
Cantidad disponible: 4 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 113 1st Edition. Nº de ref. del artículo: 26300584
Cantidad disponible: 4 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-76509
Cantidad disponible: 5 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 113. Nº de ref. del artículo: 18300578
Cantidad disponible: 4 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 113 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 78329/202
Cantidad disponible: 1 disponibles
Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
Condición: Fine. First edition, first printing, 113 pp., Hardcover, previous owner's small hand stamp to front free endpaper else fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Nº de ref. del artículo: ZB1322686
Cantidad disponible: 1 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-129852
Cantidad disponible: Más de 20 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-83216
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bernhardt, Kassel, Alemania
gebundene Ausgabe. Condición: Sehr gut. Progress in Nonlinear Differential Equations and Their Applications, Volume 17. Zust: Gutes Exemplar. XIV, 112 Seiten, Englisch 398g. Nº de ref. del artículo: 492248
Cantidad disponible: 1 disponibles