Artículos relacionados a Probability in Banach Spaces, 8: Proceedings of the...

Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference: 30 (Progress in Probability) - Tapa dura

 
9780817636579: Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference: 30 (Progress in Probability)

Sinopsis

Probability limit theorems in infinite-dimensional spaces give conditions un­ der which convergence holds uniformly over an infinite class of sets or functions. Early results in this direction were the Glivenko-Cantelli, Kolmogorov-Smirnov and Donsker theorems for empirical distribution functions. Already in these cases there is convergence in Banach spaces that are not only infinite-dimensional but nonsep­ arable. But the theory in such spaces developed slowly until the late 1970’s. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950’s and developed strongly in the 1960’s and 70’s. We have in mind here also work on sample continuity and boundedness of Gaussian processes and random methods in harmonic analysis. By the mid-70’s a substantial theory was in place, including sharp infinite-dimensional limit theorems under either metric entropy or geometric conditions. Then, modern empirical process theory began to develop, where the collection of half-lines in the line has been replaced by much more general collections of sets in and functions on multidimensional spaces. Many of the main ideas from probability in separable Banach spaces turned out to have one or more useful analogues for empirical processes. Tightness became "asymptotic equicontinuity. " Metric entropy remained useful but also was adapted to metric entropy with bracketing, random entropies, and Kolchinskii-Pollard entropy. Even norms themselves were in some situations replaced by measurable majorants, to which the well-developed separable theory then carried over straightforwardly.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Probability limit theorems in infinite-dimensional spaces give conditions un­ der which convergence holds uniformly over an infinite class of sets or functions. Early results in this direction were the Glivenko-Cantelli, Kolmogorov-Smirnov and Donsker theorems for empirical distribution functions. Already in these cases there is convergence in Banach spaces that are not only infinite-dimensional but nonsep­ arable. But the theory in such spaces developed slowly until the late 1970's. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950's and developed strongly in the 1960's and 70's. We have in mind here also work on sample continuity and boundedness of Gaussian processes and random methods in harmonic analysis. By the mid-70's a substantial theory was in place, including sharp infinite-dimensional limit theorems under either metric entropy or geometric conditions. Then, modern empirical process theory began to develop, where the collection of half-lines in the line has been replaced by much more general collections of sets in and functions on multidimensional spaces. Many of the main ideas from probability in separable Banach spaces turned out to have one or more useful analogues for empirical processes. Tightness became "asymptotic equicontinuity. " Metric entropy remained useful but also was adapted to metric entropy with bracketing, random entropies, and Kolchinskii-Pollard entropy. Even norms themselves were in some situations replaced by measurable majorants, to which the well-developed separable theory then carried over straightforwardly.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Aceptable
Connecting readers with great books...
Ver este artículo

EUR 3,20 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 3,84 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781461267287: Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference: 30 (Progress in Probability)

Edición Destacada

ISBN 10:  1461267285 ISBN 13:  9781461267287
Editorial: Birkhäuser, 2012
Tapa blanda

Resultados de la búsqueda para Probability in Banach Spaces, 8: Proceedings of the...

Imagen de archivo

Publicado por Birkhäuser, 1992
ISBN 10: 0817636579 ISBN 13: 9780817636579
Antiguo o usado Tapa dura

Librería: HPB-Red, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

hardcover. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_345210311

Contactar al vendedor

Comprar usado

EUR 21,02
Convertir moneda
Gastos de envío: EUR 3,20
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Dudley, R.M., Hahn, M.G., Kuelbs, J.
Publicado por Birkhauser, 1992
ISBN 10: 0817636579 ISBN 13: 9780817636579
Nuevo Tapa dura

Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. *Price HAS BEEN REDUCED by 10% until Monday, Sept. 29 (weekend ale item)* 512 pp., Hardcover, NEW!! - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Nº de ref. del artículo: ZB1098499

Contactar al vendedor

Comprar nuevo

EUR 21,63
Convertir moneda
Gastos de envío: EUR 3,84
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Birkhäuser, 1992
ISBN 10: 0817636579 ISBN 13: 9780817636579
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9780817636579_new

Contactar al vendedor

Comprar nuevo

EUR 158,22
Convertir moneda
Gastos de envío: EUR 13,72
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Dudley, Richard M.; Hahn, Marjorie G.; Kuelbs, James (EDT)
Publicado por Birkhäuser, 1992
ISBN 10: 0817636579 ISBN 13: 9780817636579
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 5901847-n

Contactar al vendedor

Comprar nuevo

EUR 174,65
Convertir moneda
Gastos de envío: EUR 2,26
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen de archivo

R.M. Dudley
Publicado por Birkhauser Boston Inc, Secaucus, 1992
ISBN 10: 0817636579 ISBN 13: 9780817636579
Nuevo Tapa dura

Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. Probability limit theorems in infinite-dimensional spaces give conditions un der which convergence holds uniformly over an infinite class of sets or functions. Early results in this direction were the Glivenko-Cantelli, Kolmogorov-Smirnov and Donsker theorems for empirical distribution functions. Already in these cases there is convergence in Banach spaces that are not only infinite-dimensional but nonsep arable. But the theory in such spaces developed slowly until the late 1970's. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950's and developed strongly in the 1960's and 70's. We have in mind here also work on sample continuity and boundedness of Gaussian processes and random methods in harmonic analysis. By the mid-70's a substantial theory was in place, including sharp infinite-dimensional limit theorems under either metric entropy or geometric conditions. Then, modern empirical process theory began to develop, where the collection of half-lines in the line has been replaced by much more general collections of sets in and functions on multidimensional spaces. Many of the main ideas from probability in separable Banach spaces turned out to have one or more useful analogues for empirical processes. Tightness became "asymptotic equicontinuity. " Metric entropy remained useful but also was adapted to metric entropy with bracketing, random entropies, and Kolchinskii-Pollard entropy. Even norms themselves were in some situations replaced by measurable majorants, to which the well-developed separable theory then carried over straightforwardly. Probability limit theorems in infinite-dimensional spaces give conditions un der which convergence holds uniformly over an infinite class of sets or functions. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950's and developed strongly in the 1960's and 70's. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780817636579

Contactar al vendedor

Comprar nuevo

EUR 181,25
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

R. M. Dudley
Publicado por Birkhäuser Boston Okt 1992, 1992
ISBN 10: 0817636579 ISBN 13: 9780817636579
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Probability limit theorems in infinite-dimensional spaces give conditions un der which convergence holds uniformly over an infinite class of sets or functions. Early results in this direction were the Glivenko-Cantelli, Kolmogorov-Smirnov and Donsker theorems for empirical distribution functions. Already in these cases there is convergence in Banach spaces that are not only infinite-dimensional but nonsep arable. But the theory in such spaces developed slowly until the late 1970's. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950's and developed strongly in the 1960's and 70's. We have in mind here also work on sample continuity and boundedness of Gaussian processes and random methods in harmonic analysis. By the mid-70's a substantial theory was in place, including sharp infinite-dimensional limit theorems under either metric entropy or geometric conditions. Then, modern empirical process theory began to develop, where the collection of half-lines in the line has been replaced by much more general collections of sets in and functions on multidimensional spaces. Many of the main ideas from probability in separable Banach spaces turned out to have one or more useful analogues for empirical processes. Tightness became 'asymptotic equicontinuity. ' Metric entropy remained useful but also was adapted to metric entropy with bracketing, random entropies, and Kolchinskii-Pollard entropy. Even norms themselves were in some situations replaced by measurable majorants, to which the well-developed separable theory then carried over straightforwardly. 528 pp. Englisch. Nº de ref. del artículo: 9780817636579

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Dudley, R. M.|Hahn, M. G.|Kuelbs, J.
Publicado por Birkhäuser Boston, 1992
ISBN 10: 0817636579 ISBN 13: 9780817636579
Nuevo Tapa dura

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Nº de ref. del artículo: 5975460

Contactar al vendedor

Comprar nuevo

EUR 136,16
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Dudley, Richard M.; Hahn, Marjorie G.; Kuelbs, James (EDT)
Publicado por Birkhäuser, 1992
ISBN 10: 0817636579 ISBN 13: 9780817636579
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 5901847

Contactar al vendedor

Comprar usado

EUR 185,05
Convertir moneda
Gastos de envío: EUR 2,26
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 1992
ISBN 10: 0817636579 ISBN 13: 9780817636579
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 528. Nº de ref. del artículo: 263064042

Contactar al vendedor

Comprar nuevo

EUR 214,93
Convertir moneda
Gastos de envío: EUR 3,41
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

R. M. Dudley
ISBN 10: 0817636579 ISBN 13: 9780817636579
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -Probability limit theorems in infinite-dimensional spaces give conditions un der which convergence holds uniformly over an infinite class of sets or functions. Early results in this direction were the Glivenko-Cantelli, Kolmogorov-Smirnov and Donsker theorems for empirical distribution functions. Already in these cases there is convergence in Banach spaces that are not only infinite-dimensional but nonsep arable. But the theory in such spaces developed slowly until the late 1970's. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950's and developed strongly in the 1960's and 70's. We have in mind here also work on sample continuity and boundedness of Gaussian processes and random methods in harmonic analysis. By the mid-70's a substantial theory was in place, including sharp infinite-dimensional limit theorems under either metric entropy or geometric conditions. Then, modern empirical process theory began to develop, where the collection of half-lines in the line has been replaced by much more general collections of sets in and functions on multidimensional spaces. Many of the main ideas from probability in separable Banach spaces turned out to have one or more useful analogues for empirical processes. Tightness became 'asymptotic equicontinuity. ' Metric entropy remained useful but also was adapted to metric entropy with bracketing, random entropies, and Kolchinskii-Pollard entropy. Even norms themselves were in some situations replaced by measurable majorants, to which the well-developed separable theory then carried over straightforwardly.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 528 pp. Englisch. Nº de ref. del artículo: 9780817636579

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 6 copia(s) de este libro

Ver todos los resultados de su búsqueda