For about a decade I have made an effort to study quadratic forms in infinite dimensional vector spaces over arbitrary division rings. Here we present in a systematic fashion half of the results found du ring this period, to wit, the results on denumerably infinite spaces (" NO-forms"’). Certain among the results included here had of course been published at the time when they were found, others appear for the first time (the case, for example, in Chapters IX, X , XII where I in clude results contained in the Ph.D.theses by my students W. Allenspach, L. Brand, U. Schneider, M. Studer). If one wants to give an introduction to the geometric algebra of infinite dimensional quadratic spaces, a discussion of N-dimensional O spaces ideally serves the purpose. First, these spaces show a large number of phenomena typical of infinite dimensional spaces. Second, most proofs can be done by recursion which resembles the familiar pro cedure by induction in the finite dimensional situation. Third, the student acquires a good feeling for the linear algebra in infinite di mensions because it is impossible to camouflage problems by topological expedients (in dimension NO it is easy to see, in a given case, wheth er topological language is appropriate or not).
"Sinopsis" puede pertenecer a otra edición de este libro.
For about a decade I have made an effort to study quadratic forms in infinite dimensional vector spaces over arbitrary division rings. Here we present in a systematic fashion half of the results found du ring this period, to wit, the results on denumerably infinite spaces (" NO-forms'''). Certain among the results included here had of course been published at the time when they were found, others appear for the first time (the case, for example, in Chapters IX, X , XII where I in clude results contained in the Ph.D.theses by my students W. Allenspach, L. Brand, U. Schneider, M. Studer). If one wants to give an introduction to the geometric algebra of infinite dimensional quadratic spaces, a discussion of N-dimensional O spaces ideally serves the purpose. First, these spaces show a large number of phenomena typical of infinite dimensional spaces. Second, most proofs can be done by recursion which resembles the familiar pro cedure by induction in the finite dimensional situation. Third, the student acquires a good feeling for the linear algebra in infinite di mensions because it is impossible to camouflage problems by topological expedients (in dimension NO it is easy to see, in a given case, wheth er topological language is appropriate or not).
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780817611118_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9780817611118
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -For about a decade I have made an effort to study quadratic forms in infinite dimensional vector spaces over arbitrary division rings. Here we present in a systematic fashion half of the results found du ring this period, to wit, the results on denumerably infinite spaces (' NO-forms'''). Certain among the results included here had of course been published at the time when they were found, others appear for the first time (the case, for example, in Chapters IX, X , XII where I in clude results contained in the Ph.D.theses by my students W. Allenspach, L. Brand, U. Schneider, M. Studer). If one wants to give an introduction to the geometric algebra of infinite dimensional quadratic spaces, a discussion of N-dimensional O spaces ideally serves the purpose. First, these spaces show a large number of phenomena typical of infinite dimensional spaces. Second, most proofs can be done by recursion which resembles the familiar pro cedure by induction in the finite dimensional situation. Third, the student acquires a good feeling for the linear algebra in infinite di mensions because it is impossible to camouflage problems by topological expedients (in dimension NO it is easy to see, in a given case, wheth er topological language is appropriate or not). 436 pp. Englisch. Nº de ref. del artículo: 9780817611118
Cantidad disponible: 2 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Series: Progress in Mathematics. Num Pages: 433 pages, 1 black & white illustrations, biography. BIC Classification: YQS. Category: (P) Professional & Vocational. Dimension: 229 x 152 x 23. Weight in Grams: 635. . 1979. Paperback. . . . . Nº de ref. del artículo: V9780817611118
Cantidad disponible: 15 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 436. Nº de ref. del artículo: 26101308196
Cantidad disponible: 4 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 611. Nº de ref. del artículo: C9780817611118
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 436 23:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 108947707
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 436. Nº de ref. del artículo: 18101308206
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 433 pages. 9.01x5.98x0.89 inches. In Stock. Nº de ref. del artículo: x-0817611118
Cantidad disponible: 2 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. Series: Progress in Mathematics. Num Pages: 433 pages, 1 black & white illustrations, biography. BIC Classification: YQS. Category: (P) Professional & Vocational. Dimension: 229 x 152 x 23. Weight in Grams: 635. . 1979. Paperback. . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9780817611118
Cantidad disponible: 15 disponibles