Artículos relacionados a Recent Advances in Robot Learning: Machine Learning:...

Recent Advances in Robot Learning: Machine Learning: 368 (The Springer International Series in Engineering and Computer Science) - Tapa dura

 
9780792397458: Recent Advances in Robot Learning: Machine Learning: 368 (The Springer International Series in Engineering and Computer Science)

Sinopsis

Book by None

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as diverse as parameter calibration and concept formulation.
While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other publications, a clear set of shared issues underlies many robot learning problems.

  • Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that tightly integrates perception, decision making and execution.
  • Since robot learning involves decision making, there is an inherent active learning issue.
  • Robotic domains are usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data.
  • Most robotic systems are real-time systems. Decisions must be made within critical or practical time constraints.

These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other important real-world application domains, robotics is a highly attractive area for research on machine learning.
On the other hand, machine learning is also highly attractive to robotics. There is a great variety of open problems in robotics that defy a static, hand-coded solution.
Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3).

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 3,52 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781461380641: Recent Advances in Robot Learning: Machine Learning: 368 (The Springer International Series in Engineering and Computer Science)

Edición Destacada

ISBN 10:  1461380642 ISBN 13:  9781461380641
Editorial: Springer, 2011
Tapa blanda

Resultados de la búsqueda para Recent Advances in Robot Learning: Machine Learning:...

Imagen de archivo

Publicado por Springer, 1996
ISBN 10: 0792397452 ISBN 13: 9780792397458
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190186163

Contactar al vendedor

Comprar nuevo

EUR 162,40
Convertir moneda
Gastos de envío: EUR 3,52
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 1996
ISBN 10: 0792397452 ISBN 13: 9780792397458
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9780792397458_new

Contactar al vendedor

Comprar nuevo

EUR 168,08
Convertir moneda
Gastos de envío: EUR 14,04
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Franklin, Judy A.|Mitchell, Tom M.|Thrun, Sebastian
Publicado por Springer US, 1996
ISBN 10: 0792397452 ISBN 13: 9780792397458
Nuevo Tapa dura

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning . Nº de ref. del artículo: 458443901

Contactar al vendedor

Comprar nuevo

EUR 178,14
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Judy a Franklin
Publicado por Springer Us Jun 1996, 1996
ISBN 10: 0792397452 ISBN 13: 9780792397458
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware - Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as diverse as parameter calibration and concept formulation. While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other publications, a clear set of shared issues underlies many robot learning problems. Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that tightly integrates perception, decision making and execution. Since robot learning involves decision making, there is an inherent active learning issue. Robotic domains are usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data. Most robotic systems are real-time systems. Decisions must be made within critical or practical time constraints. These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other important real-world application domains, robotics is a highly attractive area for research on machine learning. On the other hand, machine learning is also highly attractive to robotics. There is a great variety of open problems in robotics that defy a static, hand-coded solution. Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3). Nº de ref. del artículo: 9780792397458

Contactar al vendedor

Comprar nuevo

EUR 247,94
Convertir moneda
Gastos de envío: EUR 30,49
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito