Artículos relacionados a Functional Networks with Applications: A Neural-Based...

Functional Networks with Applications: A Neural-Based Paradigm: 473 (The Springer International Series in Engineering and Computer Science) - Tapa dura

 
9780792383321: Functional Networks with Applications: A Neural-Based Paradigm: 473 (The Springer International Series in Engineering and Computer Science)

Sinopsis

Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net­ works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ­ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net­ works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ­ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.

Reseña del editor

This book introduces `functional networks', a novel neural-based paradigm, and shows that functional network architectures can be efficiently applied to solve many interesting practical problems.
Included is an introduction to neural networks, a description of functional networks, examples of applications, and computer programs in Mathematica and Java languages implementing the various algorithms and methodologies.
Special emphasis is given to applications in several areas such as:

  • Box-Jenkins AR(p), MA(q), ARMA(p,q), and ARIMA (p,d,q) models with application to real-life economic problems such as the consumer price index, electric power consumption and international airlines' passenger data. Random time series and chaotic series are considered in relation to the Hénon, Lozi, Holmes and Burger maps, as well as the problems of noise reduction and information masking.
  • Learning differential equations from data and deriving the corresponding equivalent difference and functional equations. Examples of a mass supported by two springs and a viscous damper or dashpot, and a loaded beam, are used to illustrate the concepts.
  • The problem of obtaining the most general family of implicit, explicit and parametric surfaces as used in Computer Aided Design (CAD).
  • Applications of functional networks to obtain general nonlinear regression models are given and compared with standard techniques.

Functional Networks with Applications: A Neural-Based Paradigm will be of interest to individuals who work in computer science, physics, engineering, applied mathematics, statistics, economics, and other neural networks and data analysis related fields.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,33 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Functional Networks with Applications: A Neural-Based...

Imagen del vendedor

Enrique Castillo|Angel Cobo|Jose Antonio Gutierrez|Rosa Eva Pruneda
Publicado por Springer US, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Nuevo Tapa dura

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Nº de ref. del artículo: 5970841

Contactar al vendedor

Comprar nuevo

EUR 92,27
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Enrique Castillo
Publicado por Springer US Okt 1998, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes. 326 pp. Englisch. Nº de ref. del artículo: 9780792383321

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Castillo, Enrique; Cobo, Angel; Antonio Gutierrez, Jose; Pruneda, Rosa Eva
Publicado por Springer, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9780792383321_new

Contactar al vendedor

Comprar nuevo

EUR 116,18
Convertir moneda
Gastos de envío: EUR 5,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Castillo, Enrique (EDT); Cobo, Angel; Gutierrez, Jose Manuel; Pruneda, Rosa Eva
Publicado por Springer, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 757614-n

Contactar al vendedor

Comprar nuevo

EUR 104,87
Convertir moneda
Gastos de envío: EUR 17,21
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Enrique Castillo
Publicado por Springer US, Springer US, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes. Nº de ref. del artículo: 9780792383321

Contactar al vendedor

Comprar nuevo

EUR 114,36
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Castillo, Enrique (EDT); Cobo, Angel; Gutierrez, Jose Manuel; Pruneda, Rosa Eva
Publicado por Springer, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 757614-n

Contactar al vendedor

Comprar nuevo

EUR 116,17
Convertir moneda
Gastos de envío: EUR 17,33
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Enrique Castillo
Publicado por Springer US, Springer US Okt 1998, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 326 pp. Englisch. Nº de ref. del artículo: 9780792383321

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Enrique Castillo
Publicado por Springer, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Nuevo Tapa dura
Impresión bajo demanda

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 666. Nº de ref. del artículo: C9780792383321

Contactar al vendedor

Comprar nuevo

EUR 136,47
Convertir moneda
Gastos de envío: EUR 8,91
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Castillo, Enrique; Cobo, Angel; Antonio Gutierrez, Jose; Pruneda, Rosa Eva
Publicado por Springer, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190185201

Contactar al vendedor

Comprar nuevo

EUR 103,68
Convertir moneda
Gastos de envío: EUR 64,58
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Castillo, Enrique (EDT); Cobo, Angel; Gutierrez, Jose Manuel; Pruneda, Rosa Eva
Publicado por Springer, 1998
ISBN 10: 079238332X ISBN 13: 9780792383321
Antiguo o usado Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 757614

Contactar al vendedor

Comprar usado

EUR 172,55
Convertir moneda
Gastos de envío: EUR 17,33
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 2 copia(s) de este libro

Ver todos los resultados de su búsqueda