Artículos relacionados a Independent Component Analysis: Theory and Applications

Independent Component Analysis: Theory and Applications - Tapa dura

 
9780792382614: Independent Component Analysis: Theory and Applications

Sinopsis

Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues.
This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem).
The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification.
Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues.
This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem).
The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification.
Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Bueno
Cover has light wear. Unmarked,...
Ver este artículo

EUR 30,08 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 25,82 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781441950567: Independent Component Analysis: Theory and Applications

Edición Destacada

ISBN 10:  1441950567 ISBN 13:  9781441950567
Editorial: Springer, 2010
Tapa blanda

Resultados de la búsqueda para Independent Component Analysis: Theory and Applications

Imagen de archivo

Te-Won Lee
Publicado por Springer, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Antiguo o usado Tapa dura

Librería: Keeps Books, Wilmington, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

hardcover. Condición: Very Good. Cover has light wear. Unmarked, pages clean & bright. Ships Next Business Day. Nº de ref. del artículo: 240901058

Contactar al vendedor

Comprar usado

EUR 11,47
Convertir moneda
Gastos de envío: EUR 30,08
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Te-Won Lee
Publicado por Springer, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Antiguo o usado Tapa dura

Librería: Starselling, Maple Grove, MN, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. Cover is very nice and clean. Cover has normal wear and tear. Pages are very nice and clean. All books ship within 24 hours Monday - Friday. Secure bubble mailer. Fast shipping from Minnesota. Nº de ref. del artículo: 1BFL5I000YIY

Contactar al vendedor

Comprar usado

EUR 12,28
Convertir moneda
Gastos de envío: EUR 92,96
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Te-Won Lee
Publicado por Springer, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuevo Tapa dura

Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Nº de ref. del artículo: Scanned0792382617

Contactar al vendedor

Comprar nuevo

EUR 116,83
Convertir moneda
Gastos de envío: EUR 25,82
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Te-Won Lee
Publicado por Springer US, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention be. Nº de ref. del artículo: 5970785

Contactar al vendedor

Comprar nuevo

EUR 136,16
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Te-Won Lee
Publicado por Springer, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9780792382614_new

Contactar al vendedor

Comprar nuevo

EUR 165,83
Convertir moneda
Gastos de envío: EUR 5,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Te-Won Lee
Publicado por Springer US Okt 1998, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues. This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem). The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification. Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA. 248 pp. Englisch. Nº de ref. del artículo: 9780792382614

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Te-Won Lee
Publicado por Springer US, Springer US, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues. This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem). The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification. Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA. Nº de ref. del artículo: 9780792382614

Contactar al vendedor

Comprar nuevo

EUR 168,73
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Lee, Te-Won
Publicado por Kluwer Academic Publishers, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Antiguo o usado Brossura

Librería: Libro Co. Italia Srl, San Casciano Val di Pesa, FI, Italia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Brossura. Condición: fine. Dordrecht, 1998; pp. 210. Libro. Nº de ref. del artículo: 1660348

Contactar al vendedor

Comprar usado

EUR 167,95
Convertir moneda
Gastos de envío: EUR 17,00
De Italia a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Te-Won Lee
Publicado por Springer US, Springer US Okt 1998, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues.This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem).The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification.Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 248 pp. Englisch. Nº de ref. del artículo: 9780792382614

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Te-Won Lee
Publicado por Springer, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190185141

Contactar al vendedor

Comprar nuevo

EUR 158,27
Convertir moneda
Gastos de envío: EUR 64,56
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 1 copia(s) de este libro

Ver todos los resultados de su búsqueda