Complex function theory and linear algebra provide much of the basic mathematics needed by engineers engaged in numerical computations, signal processing or control. The transfer function of a linear time invariant system is a function of the complex vari able s or z and it is analytic in a large part of the complex plane. Many important prop erties of the system for which it is a transfer function are related to its analytic prop erties. On the other hand, engineers often encounter small and large matrices which describe (linear) maps between physically important quantities. In both cases similar mathematical and computational problems occur: operators, be they transfer functions or matrices, have to be simplified, approximated, decomposed and realized. Each field has developed theory and techniques to solve the main common problems encountered. Yet, there is a large, mysterious gap between complex function theory and numerical linear algebra. For example, complex function theory has solved the problem to find analytic functions of minimal complexity and minimal supremum norm that approxi e. g. , as optimal mate given values at strategic points in the complex plane. They serve approximants for a desired behavior of a system to be designed. No similar approxi mation theory for matrices existed until recently, except for the case where the matrix is (very) close to singular.
"Sinopsis" puede pertenecer a otra edición de este libro.
Complex function theory and linear algebra provide much of the basic mathematics needed by engineers engaged in numerical computations, signal processing or control. The transfer function of a linear time invariant system is a function of the complex vari able s or z and it is analytic in a large part of the complex plane. Many important prop erties of the system for which it is a transfer function are related to its analytic prop erties. On the other hand, engineers often encounter small and large matrices which describe (linear) maps between physically important quantities. In both cases similar mathematical and computational problems occur: operators, be they transfer functions or matrices, have to be simplified, approximated, decomposed and realized. Each field has developed theory and techniques to solve the main common problems encountered. Yet, there is a large, mysterious gap between complex function theory and numerical linear algebra. For example, complex function theory has solved the problem to find analytic functions of minimal complexity and minimal supremum norm that approxi e. g. , as optimal mate given values at strategic points in the complex plane. They serve approximants for a desired behavior of a system to be designed. No similar approxi mation theory for matrices existed until recently, except for the case where the matrix is (very) close to singular.
Time-Varying Systems and Computations is a unique book providing a detailed and consistent exposition of a powerful unifying framework (developed by the authors) for the study of time-variant systems and the computational aspects and problems that arise in this context. While complex function theory and linear algebra provide much of the fundamental mathematics needed by engineers engaged in numerical computations, signal processing and/or control, there has long been a large, abstruse gap between the two fields. This book shows the reader how the gap between analysis and linear algebra can be bridged. In a fascinating monograph, the authors explore, discover and exploit many interesting links that exist between classical linear algebraic concepts and complex analysis.
Time-Varying Systems and Computations opens for the reader new and exciting perspectives on linear algebra from the analysis point of view. It clearly explains a framework that allows the extension of classical results, from complex function theory to the case of time-variant operators and even finite-dimensional matrices. These results allow the user to obtain computationally feasible schemes and models for complex and large-scale systems.
Time-Varying Systems and Computations will be of interest to a broad spectrum of researchers and professionals, including applied mathematicians, control theorists, systems theorists and numerical analysts. It can also be used as a graduate course in linear time-varying system theory.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 14,90 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 3016306/202
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
Hardcover. 457 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. 9780792381891 Sprache: Englisch Gewicht in Gramm: 900. Nº de ref. del artículo: 2350789
Cantidad disponible: 1 disponibles
Librería: Antiquariaat Looijestijn, Rotterdam, Holanda
1998. xiv, 459 pp. Original boards. Spine a bit tanned, name on first free endpaper, else as new. Pictures on request. Nº de ref. del artículo: 8904
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Nº de ref. del artículo: 5970741
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780792381891_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Complex function theory and linear algebra provide much of the basic mathematics needed by engineers engaged in numerical computations, signal processing or control. The transfer function of a linear time invariant system is a function of the complex vari able s or z and it is analytic in a large part of the complex plane. Many important prop erties of the system for which it is a transfer function are related to its analytic prop erties. On the other hand, engineers often encounter small and large matrices which describe (linear) maps between physically important quantities. In both cases similar mathematical and computational problems occur: operators, be they transfer functions or matrices, have to be simplified, approximated, decomposed and realized. Each field has developed theory and techniques to solve the main common problems encountered. Yet, there is a large, mysterious gap between complex function theory and numerical linear algebra. For example, complex function theory has solved the problem to find analytic functions of minimal complexity and minimal supremum norm that approxi e. g. , as optimal mate given values at strategic points in the complex plane. They serve approximants for a desired behavior of a system to be designed. No similar approxi mation theory for matrices existed until recently, except for the case where the matrix is (very) close to singular. 484 pp. Englisch. Nº de ref. del artículo: 9780792381891
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Complex function theory and linear algebra provide much of the basic mathematics needed by engineers engaged in numerical computations, signal processing or control. The transfer function of a linear time invariant system is a function of the complex vari able s or z and it is analytic in a large part of the complex plane. Many important prop erties of the system for which it is a transfer function are related to its analytic prop erties. On the other hand, engineers often encounter small and large matrices which describe (linear) maps between physically important quantities. In both cases similar mathematical and computational problems occur: operators, be they transfer functions or matrices, have to be simplified, approximated, decomposed and realized. Each field has developed theory and techniques to solve the main common problems encountered. Yet, there is a large, mysterious gap between complex function theory and numerical linear algebra. For example, complex function theory has solved the problem to find analytic functions of minimal complexity and minimal supremum norm that approxi e. g. , as optimal mate given values at strategic points in the complex plane. They serve approximants for a desired behavior of a system to be designed. No similar approxi mation theory for matrices existed until recently, except for the case where the matrix is (very) close to singular. Nº de ref. del artículo: 9780792381891
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -Complex function theory and linear algebra provide much of the basic mathematics needed by engineers engaged in numerical computations, signal processing or control. The transfer function of a linear time invariant system is a function of the complex vari able s or z and it is analytic in a large part of the complex plane. Many important prop erties of the system for which it is a transfer function are related to its analytic prop erties. On the other hand, engineers often encounter small and large matrices which describe (linear) maps between physically important quantities. In both cases similar mathematical and computational problems occur: operators, be they transfer functions or matrices, have to be simplified, approximated, decomposed and realized. Each field has developed theory and techniques to solve the main common problems encountered. Yet, there is a large, mysterious gap between complex function theory and numerical linear algebra. For example, complex function theory has solved the problem to find analytic functions of minimal complexity and minimal supremum norm that approxi e. g. , as optimal mate given values at strategic points in the complex plane. They serve approximants for a desired behavior of a system to be designed. No similar approxi mation theory for matrices existed until recently, except for the case where the matrix is (very) close to singular.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 484 pp. Englisch. Nº de ref. del artículo: 9780792381891
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 484. Nº de ref. del artículo: 262169301
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 484 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Nº de ref. del artículo: 5678602
Cantidad disponible: 4 disponibles