This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to· the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to· the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date.
This book describes the design and theory of high-accuracy smart temperature sensors in CMOS technology. The book's major triumph is the realization of a smart temperature sensor of such high accuracy that it can be applied without any form of calibration. In addition, the authors provide the reader with an elaborate overview of dynamic offset-cancellation techniques and CMOS bandgap references, which are the basic techniques and building blocks that determine the overall accuracy of CMOS smart temperature sensors. The book's concluding chapters focus on realizations where other aspects like ultra low-design and remote temperature sensing are discussed.
High-Accuracy CMOS Smart Temperature Sensors is essential reading for anybody with an academic or professional interest in semiconductor design.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: ThriftBooks-Atlanta, AUSTELL, GA, Estados Unidos de America
Hardcover. Condición: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 0.73. Nº de ref. del artículo: G0792372174I3N00
Cantidad disponible: 1 disponibles
Librería: Phatpocket Limited, Waltham Abbey, HERTS, Reino Unido
Condición: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Nº de ref. del artículo: Z1-K-025-01941
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 1654750/202
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190184313
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: Used - Good. Used Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: P2-9780792372172
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780792372172_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date. 136 pp. Englisch. Nº de ref. del artículo: 9780792372172
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibrati. Nº de ref. del artículo: 5970001
Cantidad disponible: Más de 20 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Describes the design and theory of high-accuracy smart temperature sensors in CMOS technology. The authors provide the reader with an overview of dynamic offset-cancellation techniques and CMOS bandgap references, which are the basic techniques and building blocks that determine the overall accuracy of CMOS smart temperature sensors. Series: The Springer International Series in Engineering and Computer Science. Num Pages: 121 pages, biography. BIC Classification: TDPB; TJFD. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 234 x 156 x 9. Weight in Grams: 371. . 2000. Hardback. . . . . Nº de ref. del artículo: V9780792372172
Cantidad disponible: 15 disponibles
Librería: BennettBooksLtd, San Diego, NV, Estados Unidos de America
Hardcover. Condición: New. In shrink wrap. Looks like an interesting title! Nº de ref. del artículo: Q-0792372174
Cantidad disponible: 1 disponibles