This book should be considered as an introduction to a special dass of hierarchical systems of optimal control, where subsystems are described by partial differential equations of various types. Optimization is carried out by means of a two-level scheme, where the center optimizes coordination for the upper level and subsystems find the optimal solutions for independent local problems. The main algorithm is a method of iterative aggregation. The coordinator solves the problern with macrovariables, whose number is less than the number of initial variables. This problern is often very simple. On the lower level, we have the usual optimal control problems of math ematical physics, which are far simpler than the initial statements. Thus, the decomposition (or reduction to problems ofless dimensions) is obtained. The algorithm constructs a sequence of so-called disaggregated solutions that are feasible for the main problern and converge to its optimal solutionunder certain assumptions ( e.g., under strict convexity of the input functions). Thus, we bridge the gap between two disciplines: optimization theory of large-scale systems and mathematical physics. The first motivation was a special model of branch planning, where the final product obeys a preset assortment relation. The ratio coefficient is maximized. Constraints are given in the form of linear inequalities with block diagonal structure of the part of a matrix that corresponds to subsystems. The central coordinator assem bles the final production from the components produced by the subsystems.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book should be considered as an introduction to a special dass of hierarchical systems of optimal control, where subsystems are described by partial differential equations of various types. Optimization is carried out by means of a two-level scheme, where the center optimizes coordination for the upper level and subsystems find the optimal solutions for independent local problems. The main algorithm is a method of iterative aggregation. The coordinator solves the problern with macrovariables, whose number is less than the number of initial variables. This problern is often very simple. On the lower level, we have the usual optimal control problems of math ematical physics, which are far simpler than the initial statements. Thus, the decomposition (or reduction to problems ofless dimensions) is obtained. The algorithm constructs a sequence of so-called disaggregated solutions that are feasible for the main problern and converge to its optimal solutionunder certain assumptions ( e.g., under strict convexity of the input functions). Thus, we bridge the gap between two disciplines: optimization theory of large-scale systems and mathematical physics. The first motivation was a special model of branch planning, where the final product obeys a preset assortment relation. The ratio coefficient is maximized. Constraints are given in the form of linear inequalities with block diagonal structure of the part of a matrix that corresponds to subsystems. The central coordinator assem bles the final production from the components produced by the subsystems.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 39,49 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 5,18 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: J. HOOD, BOOKSELLERS, ABAA/ILAB, Baldwin City, KS, Estados Unidos de America
Hardcover. 307pp. Some neat highlighting on about 10 pages, else very good plus, tight and bright condition. Nº de ref. del artículo: 185271
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780792361756_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. This book should be considered as an introduction to a special dass of hierarchical systems of optimal control, where subsystems are described by partial differential equations of various types. Optimization is carried out by means of a two-level scheme, wh. Nº de ref. del artículo: 458440879
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 688. Nº de ref. del artículo: C9780792361756
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: Used. pp. 324. Nº de ref. del artículo: 262582257
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: Used. pp. 324 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Nº de ref. del artículo: 5298478
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: Used. pp. 324. Nº de ref. del artículo: 182582267
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190183572
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware - This book should be considered as an introduction to a special dass of hierarchical systems of optimal control, where subsystems are described by partial differential equations of various types. Optimization is carried out by means of a two-level scheme, where the center optimizes coordination for the upper level and subsystems find the optimal solutions for independent local problems. The main algorithm is a method of iterative aggregation. The coordinator solves the problern with macrovariables, whose number is less than the number of initial variables. This problern is often very simple. On the lower level, we have the usual optimal control problems of math ematical physics, which are far simpler than the initial statements. Thus, the decomposition (or reduction to problems ofless dimensions) is obtained. The algorithm constructs a sequence of so-called disaggregated solutions that are feasible for the main problern and converge to its optimal solutionunder certain assumptions ( e.g., under strict convexity of the input functions). Thus, we bridge the gap between two disciplines: optimization theory of large-scale systems and mathematical physics. The first motivation was a special model of branch planning, where the final product obeys a preset assortment relation. The ratio coefficient is maximized. Constraints are given in the form of linear inequalities with block diagonal structure of the part of a matrix that corresponds to subsystems. The central coordinator assem bles the final production from the components produced by the subsystems. Nº de ref. del artículo: 9780792361756
Cantidad disponible: 2 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Hardcover. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA773079236175X6
Cantidad disponible: 1 disponibles