The problems of modern society are complex, interdisciplinary and nonlin ear. ~onlinear problems are therefore abundant in several diverse disciplines. Since explicit analytic solutions of nonlinear problems in terms of familiar, well trained functions of analysis are rarely possible, one needs to exploit various approximate methods. There do exist a number of powerful procedures for ob taining approximate solutions of nonlinear problems such as, Newton-Raphson method, Galerkins method, expansion methods, dynamic programming, itera tive techniques, truncation methods, method of upper and lower bounds and Chapligin method, to name a few. Let us turn to the fruitful idea of Chapligin, see [27] (vol I), for obtaining approximate solutions of a nonlinear differential equation u' = f(t, u), u(O) = uo. Let fl' h be such that the solutions of 1t' = h (t, u), u(O) = uo, and u' = h(t,u), u(O) = uo are comparatively simple to solve, such as linear equations, and lower order equations. Suppose that we have h(t,u) s f(t,u) s h(t,u), for all (t,u).
"Sinopsis" puede pertenecer a otra edición de este libro.
The problems of modern society are complex, interdisciplinary and nonlin ear. ~onlinear problems are therefore abundant in several diverse disciplines. Since explicit analytic solutions of nonlinear problems in terms of familiar, well trained functions of analysis are rarely possible, one needs to exploit various approximate methods. There do exist a number of powerful procedures for ob taining approximate solutions of nonlinear problems such as, Newton-Raphson method, Galerkins method, expansion methods, dynamic programming, itera tive techniques, truncation methods, method of upper and lower bounds and Chapligin method, to name a few. Let us turn to the fruitful idea of Chapligin, see [27] (vol I), for obtaining approximate solutions of a nonlinear differential equation u' = f(t, u), u(O) = uo. Let fl' h be such that the solutions of 1t' = h (t, u), u(O) = uo, and u' = h(t,u), u(O) = uo are comparatively simple to solve, such as linear equations, and lower order equations. Suppose that we have h(t,u) s f(t,u) s h(t,u), for all (t,u).
The book provides a systematic development of generalized quasilinearization indicating the notions and technical difficulties that are encountered in the unified approach. It enhances considerably the usefulness of the method of quasilinearization which has proved to be very effective in several areas of investigation and in applications. Further it includes the well-known monotone iterative technique as a special case.
Audience: Researchers, industrial and engineering scientists.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,90 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 4,73 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. Aus der Auflösung einer renommierten Bibliothek. Kann Stempel beinhalten. | Seiten: 278 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 3023505/202
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
Hardcover. 287 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. 9780792350385 Sprache: Englisch Gewicht in Gramm: 900. Nº de ref. del artículo: 2351390
Cantidad disponible: 1 disponibles
Librería: Michener & Rutledge Booksellers, Inc., Baldwin City, KS, Estados Unidos de America
Hardcover. Condición: Very Good. Bookplate, otherwise text clean and solid; no dust jacket; Mathematics and its Applications; 9.21 X 6.14 X 0.69 inches; 286 pages. Nº de ref. del artículo: 208612
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780792350385_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Preface. 1: First Order Differential Equations. 1.0. Introduction. 1.1. Method of Upper and Lower Solutions. 1.2. Method of Quasilinearization. 1.3. Extensions. 1.4. Generalizations. 1.5. Refinements. 1.6. Notes. 2: First Order Differential Equations. (. Nº de ref. del artículo: 458440014
Cantidad disponible: Más de 20 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190182835
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware - The problems of modern society are complex, interdisciplinary and nonlin ear. ~onlinear problems are therefore abundant in several diverse disciplines. Since explicit analytic solutions of nonlinear problems in terms of familiar, well trained functions of analysis are rarely possible, one needs to exploit various approximate methods. There do exist a number of powerful procedures for ob taining approximate solutions of nonlinear problems such as, Newton-Raphson method, Galerkins method, expansion methods, dynamic programming, itera tive techniques, truncation methods, method of upper and lower bounds and Chapligin method, to name a few. Let us turn to the fruitful idea of Chapligin, see [27] (vol I), for obtaining approximate solutions of a nonlinear differential equation u' = f(t, u), u(O) = uo. Let fl' h be such that the solutions of 1t' = h (t, u), u(O) = uo, and u' = h(t,u), u(O) = uo are comparatively simple to solve, such as linear equations, and lower order equations. Suppose that we have h(t,u) s f(t,u) s h(t,u), for all (t,u). Nº de ref. del artículo: 9780792350385
Cantidad disponible: 2 disponibles