This book gathers original contributions from a selected group of distinguished researchers that are actively working in the theory and practical applications of solvent effects and chemical reactions. The importance of getting a good understanding of surrounding media effects on chemical reacting system is difficult to overestimate. Applications go from condensed phase chemistry, biochemical reactions in vitro to biological systems in vivo. Catalysis is a phenomenon produced by a particular system interacting with the reacting subsystem. The result may be an increment of the chemical rate or sometimes a decreased one. At the bottom, catalytic sources can be characterized as a special kind of surrounding medium effect. The materials involving in catalysis may range from inorganic components as in zeolites, homogenous components, enzymes, catalytic antibodies, and ceramic materials. . With the enormous progress achieved by computing technology, an increasing number of models and phenomenological approaches are being used to describe the effects of a given surrounding medium on the electronic properties of selected subsystem. A number of quantum chemical methods and programs, currently applied to calculate in vacuum systems, have been supplemented with a variety of model representations. With the increasing number of methodologies applied to this important field, it is becoming more and more difficult for non-specialist to cope with theoretical developments and extended applications. For this and other reasons, it is was deemed timely to produce a book where methodology and applications were analyzed and reviewed by leading experts in the field.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book gathers original contributions from a selected group of distinguished researchers that are actively working in the theory and practical applications of solvent effects and chemical reactions. The importance of getting a good understanding of surrounding media effects on chemical reacting system is difficult to overestimate. Applications go from condensed phase chemistry, biochemical reactions in vitro to biological systems in vivo. Catalysis is a phenomenon produced by a particular system interacting with the reacting subsystem. The result may be an increment of the chemical rate or sometimes a decreased one. At the bottom, catalytic sources can be characterized as a special kind of surrounding medium effect. The materials involving in catalysis may range from inorganic components as in zeolites, homogenous components, enzymes, catalytic antibodies, and ceramic materials. . With the enormous progress achieved by computing technology, an increasing number of models and phenomenological approaches are being used to describe the effects of a given surrounding medium on the electronic properties of selected subsystem. A number of quantum chemical methods and programs, currently applied to calculate in vacuum systems, have been supplemented with a variety of model representations. With the increasing number of methodologies applied to this important field, it is becoming more and more difficult for non-specialist to cope with theoretical developments and extended applications. For this and other reasons, it is was deemed timely to produce a book where methodology and applications were analyzed and reviewed by leading experts in the field.
This book presents an up-to-date view of theories, practical methods and applications of solvent effects and chemical reactivity in condensed phases. Subjects treated include continuum solvation models, the theoretical basis for the treatment of solvent effects in density functional theory, Monte Carlo simulations of chemical reactions in solution, DFT molecular dynamics simulations, crossing the transition state in solution, valence bond multi-state approach to chemical reactions in solution, quantum theory of solvent effects and chemical reactions. The approaches taken as well as the resulting findings are discussed in detail, thus covering a large part of the methodology currently used in this field.
Audience: This volume will be useful to graduate students in chemistry, physical chemistry and biochemistry, to research workers with a background in quantum chemistry and quantum mechanics, to pure and applied quantum chemists, and to industrial molecular modellers.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,64 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9780792339953
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190182139
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book gathers original contributions from a selected group of distinguished researchers that are actively working in the theory and practical applications of solvent effects and chemical reactions. The importance of getting a good understanding of surro. Nº de ref. del artículo: 5967739
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book gathers original contributions from a selected group of distinguished researchers that are actively working in the theory and practical applications of solvent effects and chemical reactions. The importance of getting a good understanding of surrounding media effects on chemical reacting system is difficult to overestimate. Applications go from condensed phase chemistry, biochemical reactions in vitro to biological systems in vivo. Catalysis is a phenomenon produced by a particular system interacting with the reacting subsystem. The result may be an increment of the chemical rate or sometimes a decreased one. At the bottom, catalytic sources can be characterized as a special kind of surrounding medium effect. The materials involving in catalysis may range from inorganic components as in zeolites, homogenous components, enzymes, catalytic antibodies, and ceramic materials. . With the enormous progress achieved by computing technology, an increasing number of models and phenomenological approaches are being used to describe the effects of a given surrounding medium on the electronic properties of selected subsystem. A number of quantum chemical methods and programs, currently applied to calculate in vacuum systems, have been supplemented with a variety of model representations. With the increasing number of methodologies applied to this important field, it is becoming more and more difficult for non-specialist to cope with theoretical developments and extended applications. For this and other reasons, it is was deemed timely to produce a book where methodology and applications were analyzed and reviewed by leading experts in the field. 394 pp. Englisch. Nº de ref. del artículo: 9780792339953
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780792339953_new
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -This book gathers original contributions from a selected group of distinguished researchers that are actively working in the theory and practical applications of solvent effects and chemical reactions. The importance of getting a good understanding of surrounding media effects on chemical reacting system is difficult to overestimate. Applications go from condensed phase chemistry, biochemical reactions in vitro to biological systems in vivo. Catalysis is a phenomenon produced by a particular system interacting with the reacting subsystem. The result may be an increment of the chemical rate or sometimes a decreased one. At the bottom, catalytic sources can be characterized as a special kind of surrounding medium effect. The materials involving in catalysis may range from inorganic components as in zeolites, homogenous components, enzymes, catalytic antibodies, and ceramic materials. . With the enormous progress achieved by computing technology, an increasing number of models and phenomenological approaches are being used to describe the effects of a given surrounding medium on the electronic properties of selected subsystem. A number of quantum chemical methods and programs, currently applied to calculate in vacuum systems, have been supplemented with a variety of model representations. With the increasing number of methodologies applied to this important field, it is becoming more and more difficult for non-specialist to cope with theoretical developments and extended applications. For this and other reasons, it is was deemed timely to produce a book where methodology and applications were analyzed and reviewed by leading experts in the field.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 394 pp. Englisch. Nº de ref. del artículo: 9780792339953
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book gathers original contributions from a selected group of distinguished researchers that are actively working in the theory and practical applications of solvent effects and chemical reactions. The importance of getting a good understanding of surrounding media effects on chemical reacting system is difficult to overestimate. Applications go from condensed phase chemistry, biochemical reactions in vitro to biological systems in vivo. Catalysis is a phenomenon produced by a particular system interacting with the reacting subsystem. The result may be an increment of the chemical rate or sometimes a decreased one. At the bottom, catalytic sources can be characterized as a special kind of surrounding medium effect. The materials involving in catalysis may range from inorganic components as in zeolites, homogenous components, enzymes, catalytic antibodies, and ceramic materials. . With the enormous progress achieved by computing technology, an increasing number of models and phenomenological approaches are being used to describe the effects of a given surrounding medium on the electronic properties of selected subsystem. A number of quantum chemical methods and programs, currently applied to calculate in vacuum systems, have been supplemented with a variety of model representations. With the increasing number of methodologies applied to this important field, it is becoming more and more difficult for non-specialist to cope with theoretical developments and extended applications. For this and other reasons, it is was deemed timely to produce a book where methodology and applications were analyzed and reviewed by leading experts in the field. Nº de ref. del artículo: 9780792339953
Cantidad disponible: 1 disponibles