Techniques for the preparation of condensed matter systems have advanced considerably in the last decade, principally due to the developments in microfabrication technologies. The widespread availability of millikelvin temperature facilities also led to the discovery of a large number of new quantum phenomena. Simultaneously, the quantum theory of small condensed matter systems has matured, allowing quantitative predictions.
The effects discussed in Quantum Dynamics of Submicron Structures include typical quantum interference phenomena, such as the Aharonov-Bohm-like oscillations of the magnetoresistance of thin metallic cylinders and rings, transport through chaotic billiards, and such quantization effects as the integer and fractional quantum Hall effect and the quantization of the conductance of point contacts in integer multiples of the `conductance quantum’. Transport properties and tunnelling processes in various types of normal metal and superconductor tunnelling systems are treated. The statistical properties of the quantum states of electrons in spatially inhomogeneous systems, such as a random, inhomogeneous magnetic field, are investigated. Interacting systems, like the Luttinger liquid or electrons in a quantum dot, are also considered.
Reviews are given of quantum blockade mechanisms for electrons that tunnel through small junctions, like the Coulomb blockade and spin blockade, the influence of dissipative coupling of charge carriers to an environment, and Andreev scattering. Coulomb interactions and quantization effects in transport through quantum dots and in double-well potentials, as well as quantum effects in the motion of vortices, as in the Aharonov-Casher effect, are discussed.
The status of the theory of the metal-insulator and superconductor-insulator phase transitions in ordered and disordered granular systems are reviewed as examples in which such quantum effects are of great importance.
"Sinopsis" puede pertenecer a otra edición de este libro.
Techniques for the preparation of condensed matter systems have advanced considerably in the last decade, principally due to the developments in microfabrication technologies. The widespread availability of millikelvin temperature facilities also led to the discovery of a large number of new quantum phenomena. Simultaneously, the quantum theory of small condensed matter systems has matured, allowing quantitative predictions.
The effects discussed in Quantum Dynamics of Submicron Structures include typical quantum interference phenomena, such as the Aharonov-Bohm-like oscillations of the magnetoresistance of thin metallic cylinders and rings, transport through chaotic billiards, and such quantization effects as the integer and fractional quantum Hall effect and the quantization of the conductance of point contacts in integer multiples of the `conductance quantum'. Transport properties and tunnelling processes in various types of normal metal and superconductor tunnelling systems are treated. The statistical properties of the quantum states of electrons in spatially inhomogeneous systems, such as a random, inhomogeneous magnetic field, are investigated. Interacting systems, like the Luttinger liquid or electrons in a quantum dot, are also considered.
Reviews are given of quantum blockade mechanisms for electrons that tunnel through small junctions, like the Coulomb blockade and spin blockade, the influence of dissipative coupling of charge carriers to an environment, and Andreev scattering. Coulomb interactions and quantization effects in transport through quantum dots and in double-well potentials, as well as quantum effects in the motion of vortices, as in the Aharonov-Casher effect, are discussed.
The status of the theory of the metal-insulator and superconductor-insulator phase transitions in ordered and disordered granular systems are reviewed as examples in which such quantum effects are of great importance.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780792334699_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proceedings of the NATO Advanced Research Workshop on `Submicron Quantum Dynamics , Trieste, Italy, June 13--July 1, 1994 Techniques for the preparation of condensed matter systems have advanced considerably in the last decade, principally due to the . Nº de ref. del artículo: 5967424
Cantidad disponible: Más de 20 disponibles
Librería: preigu, Osnabrück, Alemania
Buch. Condición: Neu. Quantum Dynamics of Submicron Structures | Hilda A. Cerdeira (u. a.) | Buch | xxiii | Englisch | 1995 | Springer Netherland | EAN 9780792334699 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 102105225
Cantidad disponible: 5 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Techniques for the preparation of condensed matter systems have advanced considerably in the last decade, principally due to the developments in microfabrication technologies. The widespread availability of millikelvin temperature facilities also led to the discovery of a large number of new quantum phenomena. Simultaneously, the quantum theory of small condensed matter systems has matured, allowing quantitative predictions.The effects discussed in Quantum Dynamics of Submicron Structures include typical quantum interference phenomena, such as the Aharonov-Bohm-like oscillations of the magnetoresistance of thin metallic cylinders and rings, transport through chaotic billiards, and such quantization effects as the integer and fractional quantum Hall effect and the quantization of the conductance of point contacts in integer multiples of the `conductance quantum'. Transport properties and tunnelling processes in various types of normal metal and superconductor tunnelling systems are treated. The statistical properties of the quantum states of electrons in spatially inhomogeneous systems, such as a random, inhomogeneous magnetic field, are investigated. Interacting systems, like the Luttinger liquid or electrons in a quantum dot, are also considered.Reviews are given of quantum blockade mechanisms for electrons that tunnel through small junctions, like the Coulomb blockade and spin blockade, the influence of dissipative coupling of charge carriers to an environment, and Andreev scattering. Coulomb interactions and quantization effects in transport through quantum dots and in double-well potentials, as well as quantum effects in the motion of vortices, as in the Aharonov-Casher effect, are discussed.The status of the theory of the metal-insulator and superconductor-insulator phase transitions in ordered and disordered granular systems are reviewed as examples in which such quantum effects are of greatimportance.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 772 pp. Englisch. Nº de ref. del artículo: 9780792334699
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Techniques for the preparation of condensed matter systems have advanced considerably in the last decade, principally due to the developments in microfabrication technologies. The widespread availability of millikelvin temperature facilities also led to the discovery of a large number of new quantum phenomena. Simultaneously, the quantum theory of small condensed matter systems has matured, allowing quantitative predictions. The effects discussed in Quantum Dynamics of Submicron Structures include typical quantum interference phenomena, such as the Aharonov-Bohm-like oscillations of the magnetoresistance of thin metallic cylinders and rings, transport through chaotic billiards, and such quantization effects as the integer and fractional quantum Hall effect and the quantization of the conductance of point contacts in integer multiples of the `conductance quantum'. Transport properties and tunnelling processes in various types of normal metal and superconductor tunnelling systems are treated. The statistical properties of the quantum states of electrons in spatially inhomogeneous systems, such as a random, inhomogeneous magnetic field, are investigated. Interacting systems, like the Luttinger liquid or electrons in a quantum dot, are also considered. Reviews are given of quantum blockade mechanisms for electrons that tunnel through small junctions, like the Coulomb blockade and spin blockade, the influence of dissipative coupling of charge carriers to an environment, and Andreev scattering. Coulomb interactions and quantization effects in transport through quantum dots and in double-well potentials, as well as quantum effects in the motion of vortices, as in the Aharonov-Casher effect, are discussed. The status of the theory of the metal-insulator and superconductor-insulator phase transitions in ordered and disordered granular systems are reviewed as examples in which such quantum effects are of greatimportance. Nº de ref. del artículo: 9780792334699
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Techniques for the preparation of condensed matter systems have advanced considerably in the last decade, principally due to the developments in microfabrication technologies. The widespread availability of millikelvin temperature facilities also led to the discovery of a large number of new quantum phenomena. Simultaneously, the quantum theory of small condensed matter systems has matured, allowing quantitative predictions. The effects discussed in Quantum Dynamics of Submicron Structures include typical quantum interference phenomena, such as the Aharonov-Bohm-like oscillations of the magnetoresistance of thin metallic cylinders and rings, transport through chaotic billiards, and such quantization effects as the integer and fractional quantum Hall effect and the quantization of the conductance of point contacts in integer multiples of the `conductance quantum'. Transport properties and tunnelling processes in various types of normal metal and superconductor tunnelling systems are treated. The statistical properties of the quantum states of electrons in spatially inhomogeneous systems, such as a random, inhomogeneous magnetic field, are investigated. Interacting systems, like the Luttinger liquid or electrons in a quantum dot, are also considered. Reviews are given of quantum blockade mechanisms for electrons that tunnel through small junctions, like the Coulomb blockade and spin blockade, the influence of dissipative coupling of charge carriers to an environment, and Andreev scattering. Coulomb interactions and quantization effects in transport through quantum dots and in double-well potentials, as well as quantum effects in the motion of vortices, as in the Aharonov-Casher effect, are discussed. The status of the theory of the metal-insulator and superconductor-insulator phase transitions in ordered and disordered granular systems are reviewed as examples in which such quantum effects are of great importance. 772 pp. Englisch. Nº de ref. del artículo: 9780792334699
Cantidad disponible: 2 disponibles