During the investigation of large systems described by evolution equations, we encounter many problems. Of special interest is the problem of "high dimensionality" or, more precisely, the problem of the complexity of the phase space. The notion of the "comple xity of the. phase space" includes not only the high dimensionality of, say, a system of linear equations which appear in the mathematical model of the system (in the case when the phase space of the model is finite but very large), as this is usually understood, but also the structure of the phase space itself, which can be a finite, countable, continual, or, in general, arbitrary set equipped with the structure of a measurable space. Certainly, 6 6 this does not mean that, for example, the space (R 6, ( ), where 6 is a a-algebra of Borel sets in R 6, considered as a phase space of, say, a six-dimensional Wiener process (see Gikhman and Skorokhod [1]), has a "complex structure". But this will be true if the 6 same space (R 6, ( ) is regarded as a phase space of an evolution system describing, for example, the motion of a particle with small mass in a viscous liquid (see Chandrasek har [1]).
"Sinopsis" puede pertenecer a otra edición de este libro.
During the investigation of large systems described by evolution equations, we encounter many problems. Of special interest is the problem of "high dimensionality" or, more precisely, the problem of the complexity of the phase space. The notion of the "comple xity of the. phase space" includes not only the high dimensionality of, say, a system of linear equations which appear in the mathematical model of the system (in the case when the phase space of the model is finite but very large), as this is usually understood, but also the structure of the phase space itself, which can be a finite, countable, continual, or, in general, arbitrary set equipped with the structure of a measurable space. Certainly, 6 6 this does not mean that, for example, the space (R 6, ( ), where 6 is a a-algebra of Borel sets in R 6, considered as a phase space of, say, a six-dimensional Wiener process (see Gikhman and Skorokhod [1]), has a "complex structure". But this will be true if the 6 same space (R 6, ( ) is regarded as a phase space of an evolution system describing, for example, the motion of a particle with small mass in a viscous liquid (see Chandrasek har [1]).
This volume is devoted to theoretical results which formalize the concept of state lumping: the transformation of evolutions of systems having a complex (large) phase space to those having a simpler (small) phase space. The theory of phase lumping has aspects in common with averaging methods, projection formalism, stiff systems of differential equations, and other asymptotic theorems. Numerous examples are presented in this book from the theory and applications of random processes, and statistical and quantum mechanics which illustrate the potential capabilities of the theory developed.
The volume contains seven chapters. Chapter 1 presents an exposition of the basic notions of the theory of linear operators. Chapter 2 discusses aspects of the theory of semigroups of operators and Markov processes which have relevance to what follows. In Chapters 3--5, invertibly reducible operators perturbed on the spectrum are investigated, and the theory of singularly perturbed semigroups of operators is developed assuming that the perturbation is subordinated to the perturbed operator. The case of arbitrary perturbation is also considered, and the results are presented in the form of limit theorems and asymptotic expansions. Chapters 6 and 7 describe various applications of the method of phase lumping to Markov and semi-Markov processes, dynamical systems, quantum mechanics, etc. The applications discussed are by no means exhaustive and this book points the way to many more fruitful applications in various other areas.
For researchers whose work involves functional analysis, semigroup theory, Markov processes and probability theory.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,53 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 4,65 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780792324133_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. During the investigation of large systems described by evolution equations, we encounter many problems. Of special interest is the problem of high dimensionality or, more precisely, the problem of the complexity of the phase space. The notion of the comp. Nº de ref. del artículo: 5966867
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - During the investigation of large systems described by evolution equations, we encounter many problems. Of special interest is the problem of 'high dimensionality' or, more precisely, the problem of the complexity of the phase space. The notion of the 'comple xity of the. phase space' includes not only the high dimensionality of, say, a system of linear equations which appear in the mathematical model of the system (in the case when the phase space of the model is finite but very large), as this is usually understood, but also the structure of the phase space itself, which can be a finite, countable, continual, or, in general, arbitrary set equipped with the structure of a measurable space. Certainly, 6 6 this does not mean that, for example, the space (R 6, ( ), where 6 is a a-algebra of Borel sets in R 6, considered as a phase space of, say, a six-dimensional Wiener process (see Gikhman and Skorokhod [1]), has a 'complex structure'. But this will be true if the 6 same space (R 6, ( ) is regarded as a phase space of an evolution system describing, for example, the motion of a particle with small mass in a viscous liquid (see Chandrasek har [1]). Nº de ref. del artículo: 9780792324133
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 616. Nº de ref. del artículo: C9780792324133
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 3164800-n
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -During the investigation of large systems described by evolution equations, we encounter many problems. Of special interest is the problem of 'high dimensionality' or, more precisely, the problem of the complexity of the phase space. The notion of the 'comple xity of the. phase space' includes not only the high dimensionality of, say, a system of linear equations which appear in the mathematical model of the system (in the case when the phase space of the model is finite but very large), as this is usually understood, but also the structure of the phase space itself, which can be a finite, countable, continual, or, in general, arbitrary set equipped with the structure of a measurable space. Certainly, 6 6 this does not mean that, for example, the space (R 6, ( ), where 6 is a a-algebra of Borel sets in R 6, considered as a phase space of, say, a six-dimensional Wiener process (see Gikhman and Skorokhod [1]), has a 'complex structure'. But this will be true if the 6 same space (R 6, ( ) is regarded as a phase space of an evolution system describing, for example, the motion of a particle with small mass in a viscous liquid (see Chandrasek har [1]).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 292 pp. Englisch. Nº de ref. del artículo: 9780792324133
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 292. Nº de ref. del artículo: 26544041
Cantidad disponible: 4 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 3164800-n
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 292. Nº de ref. del artículo: 18544035
Cantidad disponible: 4 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 3164800
Cantidad disponible: Más de 20 disponibles