An introduction to the state of the art in the study of Kähler groups
This book gives an authoritative and up-to-date introduction to the study of fundamental groups of compact Kähler manifolds, known as Kähler groups. Approaching the subject from the perspective of a geometric group theorist, Pierre Py equips readers with the necessary background in both geometric group theory and Kähler geometry, covering topics such as the actions of Kähler groups on spaces of nonpositive curvature, the large-scale geometry of infinite covering spaces of compact Kähler manifolds, and the topology of level sets of pluriharmonic functions.
Presenting the most important results from the past three decades, the book provides graduate students and researchers with detailed original proofs of several central theorems, including Gromov and Schoen’s description of Kähler group actions on trees; the study of solvable quotients of Kähler groups following the works of Arapura, Beauville, Campana, Delzant, and Nori; and Napier and Ramachandran’s work characterizing covering spaces of compact Kähler manifolds having many ends. It also describes without proof many of the recent breakthroughs in the field.
Lectures on Kähler Groups also gives, in eight appendixes, detailed introductions to such topics as the study of ends of groups and spaces, groups acting on trees and Hilbert spaces, potential theory, and L2 cohomology on Riemannian manifolds.
"Sinopsis" puede pertenecer a otra edición de este libro.
Pierre Py is a CNRS researcher at the Université Grenoble Alpes in France.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 12,75 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 1,03 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WP-9780691247151
Cantidad disponible: 15 disponibles
Librería: Books From California, Simi Valley, CA, Estados Unidos de America
hardcover. Condición: Fine. Nº de ref. del artículo: mon0003733385
Cantidad disponible: 3 disponibles
Librería: Books From California, Simi Valley, CA, Estados Unidos de America
hardcover. Condición: Very Good. Cover and edges may have some wear. Clean, unmarked copy. Nº de ref. del artículo: mon0003733336
Cantidad disponible: 1 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9780691247151
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780691247151_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 47627194-n
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 47627194-n
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47627194
Cantidad disponible: 2 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47627194
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware - 'A natural question that sits at the nexus of algebraic geometry, differential geometry, and geometric group theory is: which groups can be realized as fundamental groups of compact Kèahler manifolds, called 'Kèahler groups' Roughly speaking, the fundamental group of a manifold measures the number of 'holes.' Many restrictions are known, and many examples are known; but mathematicians are far from having a precise conjecture about which groups are Kèahler. The question serves as a fruitful connection between several major areas of geometry and complex analysis. Py's book is an up-to-date pedagogical survey of the central theorems and methods for the study of Kèahler groups including, where illuminating, detailed proofs. It includes results of Gromov, Schoen, Napier, Ramachandran, Corlette, Simpson, Delzant, Arapura, and Nori. The charm of the subject is that different methods yield information of different flavors, and the challenge is to draw these threads together. This book leans toward geometric group theory, but it gives a coherent account of great value to anyone interested in Kèahler groups - and in Kèahler manifolds more broadly. The emphasis is on unity and cross-fertilization among approaches'. Nº de ref. del artículo: 9780691247151
Cantidad disponible: 2 disponibles