A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil’s conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil’s conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ℓ-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.
Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil’s conjecture. The proof of the product formula will appear in a sequel volume.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dennis Gaitsgory is professor of mathematics at Harvard University. He is the coauthor of A Study in Derived Algebraic Geometry. Jacob Lurie is professor of mathematics at Harvard University. He is the author of Higher Topos Theory (Princeton).
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,52 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 19,29 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Labyrinth Books, Princeton, NJ, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 228024
Cantidad disponible: 3 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WP-9780691182131
Cantidad disponible: 2 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WP-9780691182131
Cantidad disponible: 2 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 32759720-n
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 32759720-n
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 32759720
Cantidad disponible: 2 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 32759720
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780691182131_new
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware - A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ¿-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume. Nº de ref. del artículo: 9780691182131
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Über den AutorDennis Gaitsgory is professor of mathematics at Harvard University. He is the coauthor of A Study in Derived Algebraic Geometry. Jacob Lurie is professor of mathematics at Harvard University. He is. Nº de ref. del artículo: 259147719
Cantidad disponible: 2 disponibles