Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Holder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations. The construction itself--an intricate algorithm with hidden symmetries--mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"--used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem--has been extended to a broad range of applications that are surveyed in the appendix. Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture.
"Sinopsis" puede pertenecer a otra edición de este libro.
Philip Isett is assistant professor of mathematics at the University of Texas, Austin.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,25 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,40 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Academybookshop, Long Island City, NY, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: 47-2-gj8a-Holder
Cantidad disponible: 2 disponibles
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: N-gj24-09818
Cantidad disponible: 1 disponibles
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: F-gj24-06701
Cantidad disponible: 1 disponibles
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: N-gj24-09817
Cantidad disponible: 1 disponibles
Librería: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Nº de ref. del artículo: SHUB112529
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 27914721-n
Cantidad disponible: 2 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WP-9780691174839
Cantidad disponible: 1 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Holder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations. The construction itself--an intricate algorithm with hidden symmetries--mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"--used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem--has been extended to a broad range of applications that are surveyed in the appendix.Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture. Nº de ref. del artículo: LU-9780691174839
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 208. Nº de ref. del artículo: 26375054112
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 27914721
Cantidad disponible: 2 disponibles